meters of water @ 4°C (mH2O) | pounds per square inch (psi) |
---|---|
0 | 0 |
1 | 1.4223337722212 |
2 | 2.8446675444424 |
3 | 4.2670013166636 |
4 | 5.6893350888847 |
5 | 7.1116688611059 |
6 | 8.5340026333271 |
7 | 9.9563364055483 |
8 | 11.378670177769 |
9 | 12.801003949991 |
10 | 14.223337722212 |
20 | 28.446675444424 |
30 | 42.670013166636 |
40 | 56.893350888847 |
50 | 71.116688611059 |
60 | 85.340026333271 |
70 | 99.563364055483 |
80 | 113.78670177769 |
90 | 128.01003949991 |
100 | 142.23337722212 |
1000 | 1422.3337722212 |
Converting between meters of water at 4°C and pounds per square inch (psi) involves understanding the relationship between pressure, density, and gravity. Let's explore this conversion.
The conversion from meters of water to psi is based on the hydrostatic pressure exerted by a column of water. This pressure depends on the height of the water column, the density of water, and the acceleration due to gravity. Water at 4°C is often used as a standard because water's density is maximal at this temperature ().
The pressure () exerted by a fluid column is given by:
Where:
To convert meters of water to psi, we need to use appropriate conversion factors:
Calculate pressure in Pascals:
Convert Pascals to psi:
So, 1 meter of water at 4°C is approximately equal to 1.422 psi.
Convert psi to Pascals:
Calculate height of water column:
So, 1 psi is approximately equal to 0.703 meters of water at 4°C.
While there isn't a specific "law" directly tied to the meters of water to psi conversion, the principles are rooted in fluid mechanics and the fundamental understanding of pressure. Blaise Pascal, a 17th-century French mathematician, physicist, and philosopher, made significant contributions to the study of fluid pressure, leading to Pascal's Law, which states that pressure applied to a fluid in a closed container is transmitted equally to every point of the fluid and the walls of the container. This principle underlies the relationship between water column height and pressure.
Credible Sources:
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the pounds per square inch to other unit conversions.
The following sections will provide a comprehensive understanding of meters of water at 4°C as a unit of pressure.
Meters of water (mH2O) at 4°C is a unit of pressure that represents the pressure exerted by a column of water one meter high at a temperature of 4 degrees Celsius. This temperature is specified because the density of water is at its maximum at approximately 4°C (39.2°F). Since pressure is directly proportional to density, specifying the temperature makes the unit more precise.
The pressure at the bottom of a column of fluid is given by:
Where:
For meters of water at 4°C:
Therefore, 1 meter of water at 4°C is equal to:
Where is Pascal, the SI unit of pressure.
The concept of pressure exerted by a fluid column is a fundamental principle of hydrostatics. While no specific law is uniquely tied to "meters of water," the underlying principles are closely associated with Blaise Pascal. Pascal's Law states that pressure applied to a confined fluid is transmitted equally in all directions throughout the fluid. This principle directly relates to how the weight of a water column creates pressure at any point within that column. To learn more about Pascal's Law, visit Britannica's article on Pascal's Principle.
Pounds per square inch (psi) is a unit of pressure that's commonly used, especially in the United States. Understanding what it represents and how it's derived helps to grasp its significance in various applications.
Pounds per square inch (psi) is a unit of pressure defined as the amount of force in pounds (lbs) exerted on an area of one square inch ().
Psi is derived by dividing the force applied, measured in pounds, by the area over which that force is distributed, measured in square inches. It's a direct measure of force intensity. For example, 10 psi means that a force of 10 pounds is acting on every square inch of the surface.
Tire Pressure: Car tires are typically inflated to 30-35 psi. This ensures optimal contact with the road, fuel efficiency, and tire wear.
Compressed Air Systems: Air compressors used in workshops and industries often operate at pressures of 90-120 psi to power tools and equipment.
Hydraulic Systems: Hydraulic systems in heavy machinery (like excavators and cranes) can operate at thousands of psi to generate the immense force needed for lifting and moving heavy loads. Pressures can range from 3,000 to 5,000 psi or even higher.
Water Pressure: Standard household water pressure is usually around 40-60 psi.
Scuba Diving Tanks: Scuba tanks are filled with compressed air to pressures of around 3,000 psi to allow divers to breathe underwater for extended periods.
Pascal's Law is relevant to understanding pressure in fluids (liquids and gases). Blaise Pascal was a French mathematician, physicist, and philosopher. Pascal's Law states that pressure applied to a confined fluid is transmitted equally in all directions throughout the fluid. This principle is fundamental to hydraulics and pneumatic systems where pressure is used to transmit force. Pascal's Law can be summarized as:
A change in pressure at any point in a confined fluid is transmitted undiminished to all points in the fluid.
More formally:
Where:
For more information, you can refer to this excellent explanation of Pascal's Law at NASA
Convert 1 mH2O to other units | Result |
---|---|
meters of water @ 4°C to pascals (mH2O to Pa) | 9806.65 |
meters of water @ 4°C to kilopascals (mH2O to kPa) | 9.80665 |
meters of water @ 4°C to megapascals (mH2O to MPa) | 0.00980665 |
meters of water @ 4°C to hectopascals (mH2O to hPa) | 98.0665 |
meters of water @ 4°C to millibar (mH2O to mbar) | 98.0665 |
meters of water @ 4°C to bar (mH2O to bar) | 0.0980665 |
meters of water @ 4°C to torr (mH2O to torr) | 73.555924006908 |
meters of water @ 4°C to millimeters of mercury (mH2O to mmHg) | 73.556127270818 |
meters of water @ 4°C to pounds per square inch (mH2O to psi) | 1.4223337722212 |
meters of water @ 4°C to kilopound per square inch (mH2O to ksi) | 0.001422333772221 |
meters of water @ 4°C to Inches of mercury (mH2O to inHg) | 2.895901839792 |