bits per second (bit/s) to Terabytes per hour (TB/hour) conversion

bits per second to Terabytes per hour conversion table

bits per second (bit/s)Terabytes per hour (TB/hour)
00
14.5e-10
29e-10
31.35e-9
41.8e-9
52.25e-9
62.7e-9
73.15e-9
83.6e-9
94.05e-9
104.5e-9
209e-9
301.35e-8
401.8e-8
502.25e-8
602.7e-8
703.15e-8
803.6e-8
904.05e-8
1004.5e-8
10004.5e-7

How to convert bits per second to terabytes per hour?

To convert bits per second (bps) to Terabytes per hour (TB/hr), you can follow these steps:

  1. Convert bits per second to bits per hour:

    • There are 60 seconds in a minute and 60 minutes in an hour.
    • Therefore, there are 60 * 60 = 3600 seconds in an hour.
    • So, 1 bps is equivalent to 1 bit/second * 3600 seconds/hour = 3600 bits/hour.
  2. Convert bits to bytes:

    • There are 8 bits in a byte.
    • Therefore, 3600 bits/hour * (1 byte / 8 bits) = 450 bytes/hour.
  3. Convert bytes to Terabytes:

    • The conversion is different depending on whether you use the base 10 (decimal) system or base 2 (binary) system:

Base 10 (Decimal):

  • 1 Kilobyte (KB) = 1000 Bytes
  • 1 Megabyte (MB) = 1000 KB
  • 1 Gigabyte (GB) = 1000 MB
  • 1 Terabyte (TB) = 1000 GB

So,

450 bytes/hour = 450 / 1000 KB
              = 0.45 KB/hour
              = 0.45 / 1000 MB
              = 0.00045 MB/hour
              = 0.00045 / 1000 GB
              = 0.00000045 GB/hour
              = 0.00000045 / 1000 TB
              = 0.00000000045 TB/hour

Base 2 (Binary):

  • 1 Kibibyte (KiB) = 1024 Bytes
  • 1 Mebibyte (MiB) = 1024 KiB
  • 1 Gibibyte (GiB) = 1024 MiB
  • 1 Tebibyte (TiB) = 1024 GiB

So,

450 bytes/hour = 450 / 1024 KiB
              ≈ 0.439453125 KiB/hour
              ≈ 0.439453125 / 1024 MiB
              ≈ 0.0004291534424 MiB/hour
              ≈ 0.0004291534424 / 1024 GiB
              ≈ 4.189328963e-7 GiB/hour
              ≈ 4.189328963e-7 / 1024 TiB
              ≈ 4.09299236e-10 TiB/hour

So, to summarize:

  • 1 bps = 0.00000000045 TB/hr (Base 10)
  • 1 bps ≈ 4.093e-10 TiB/hr (Base 2)

Real-world Examples:

  1. 100 Mbps (Megabits per second):

    • In a typical home internet connection:
      • Using Base 10:
        • 100×106100 \times 10^6 bps
        • TB/hr = 100×106×3600/(8×1012)100 \times 10^6 \times 3600 / (8 \times 10^{12})
        • = 0.045 TB/hr
      • Using Base 2:
        • 100×220100 \times 2^{20} bps
        • TiB/hr = 100×220×3600/(8×240)100 \times 2^{20} \times 3600 / (8 \times 2^{40})
        • ≈ 0.041 TiB/hr
  2. 1 Gbps (Gigabits per second):

    • High-speed corporate internet or data center:
      • Using Base 10:
        • 1×1091 \times 10^9 bps
        • TB/hr = 0.45 TB/hr
      • Using Base 2:
        • 1×2301 \times 2^{30} bps
        • TiB/hr ≈ 0.409 TiB/hr
  3. 10 Gbps (Gigabits per second):

    • Fiber optic connections used in large data centers:
      • Using Base 10:
        • 10×10910 \times 10^9 bps
        • TB/hr = 4.5 TB/hr
      • Using Base 2:
        • 10×23010 \times 2^{30} bps
        • TiB/hr ≈ 4.093 TiB/hr

These examples illustrate how different speeds of data transmission can be expressed in terms of much larger data quantities over a longer period.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Terabytes per hour to other unit conversions.

What is bits per second?

Here's a breakdown of bits per second, its meaning, and relevant information for your website:

Understanding Bits per Second (bps)

Bits per second (bps) is a standard unit of data transfer rate, quantifying the number of bits transmitted or received per second. It reflects the speed of digital communication.

Formation of Bits per Second

  • Bit: The fundamental unit of information in computing, representing a binary digit (0 or 1).
  • Second: The standard unit of time.

Therefore, 1 bps means one bit of data is transmitted or received in one second. Higher bps values indicate faster data transfer speeds. Common multiples include:

  • Kilobits per second (kbps): 1 kbps = 1,000 bps
  • Megabits per second (Mbps): 1 Mbps = 1,000 kbps = 1,000,000 bps
  • Gigabits per second (Gbps): 1 Gbps = 1,000 Mbps = 1,000,000,000 bps
  • Terabits per second (Tbps): 1 Tbps = 1,000 Gbps = 1,000,000,000,000 bps

Base 10 vs. Base 2 (Binary)

In the context of data storage and transfer rates, there can be confusion between base-10 (decimal) and base-2 (binary) prefixes.

  • Base-10 (Decimal): As described above, 1 kilobit = 1,000 bits, 1 megabit = 1,000,000 bits, and so on. This is the common usage for data transfer rates.
  • Base-2 (Binary): In computing, especially concerning memory and storage, binary prefixes are sometimes used. In this case, 1 kibibit (Kibit) = 1,024 bits, 1 mebibit (Mibit) = 1,048,576 bits, and so on.

While base-2 prefixes (kibibit, mebibit, gibibit) exist, they are less commonly used when discussing data transfer rates. It's important to note that when representing memory, the actual binary value used in base 2 may affect the data transfer.

Real-World Examples

  • Dial-up Modem: A dial-up modem might have a maximum speed of 56 kbps (kilobits per second).
  • Broadband Internet: A typical broadband internet connection can offer speeds of 25 Mbps (megabits per second) or higher. Fiber optic connections can reach 1 Gbps (gigabit per second) or more.
  • Local Area Network (LAN): Wired LAN connections often operate at 1 Gbps or 10 Gbps.
  • Wireless LAN (Wi-Fi): Wi-Fi speeds vary greatly depending on the standard (e.g., 802.11ac, 802.11ax) and can range from tens of Mbps to several Gbps.
  • High-speed Data Transfer: Thunderbolt 3/4 ports can support data transfer rates up to 40 Gbps.
  • Data Center Interconnects: High-performance data centers use connections that can operate at 400 Gbps, 800 Gbps or even higher.

Relevant Laws and People

While there's no specific "law" directly tied to bits per second, Claude Shannon's work on information theory is fundamental.

  • Claude Shannon: Shannon's work, particularly the Noisy-channel coding theorem, establishes the theoretical maximum rate at which information can be reliably transmitted over a communication channel, given a certain level of noise. While not directly about "bits per second" as a unit, his work provides the theoretical foundation for understanding the limits of data transfer.

SEO Considerations

Using keywords like "data transfer rate," "bandwidth," and "network speed" will help improve search engine visibility. Focus on providing clear explanations and real-world examples to improve user engagement.

What is Terabytes per Hour (TB/hr)?

Terabytes per hour (TB/hr) is a data transfer rate unit. It specifies the amount of data, measured in terabytes (TB), that can be transmitted or processed in one hour. It's commonly used to assess the performance of data storage systems, network connections, and data processing applications.

How is TB/hr Formed?

TB/hr is formed by combining the unit of data storage, the terabyte (TB), with the unit of time, the hour (hr). A terabyte represents a large quantity of data, and an hour is a standard unit of time. Therefore, TB/hr expresses the rate at which this large amount of data can be handled over a specific period.

Base 10 vs. Base 2 Considerations

In computing, terabytes can be interpreted in two ways: base 10 (decimal) or base 2 (binary). This difference can lead to confusion if not clarified.

  • Base 10 (Decimal): 1 TB = 10<sup>12</sup> bytes = 1,000,000,000,000 bytes
  • Base 2 (Binary): 1 TB = 2<sup>40</sup> bytes = 1,099,511,627,776 bytes

Due to the difference of the meaning of Terabytes you will get different result between base 10 and base 2 calculations. This difference can become significant when dealing with large data transfers.

Conversion formulas from TB/hr(base 10) to Bytes/second

Bytes/second=TB/hr×10123600\text{Bytes/second} = \frac{\text{TB/hr} \times 10^{12}}{3600}

Conversion formulas from TB/hr(base 2) to Bytes/second

Bytes/second=TB/hr×2403600\text{Bytes/second} = \frac{\text{TB/hr} \times 2^{40}}{3600}

Common Scenarios and Examples

Here are some real-world examples of where you might encounter TB/hr:

  • Data Backup and Restore: Large enterprises often back up their data to ensure data availability if there are disasters or data corruption. For example, a cloud backup service might advertise a restore rate of 5 TB/hr for enterprise clients. This means you can restore 5 terabytes of backed-up data from cloud storage every hour.

  • Network Data Transfer: A telecommunications company might measure data transfer rates on its high-speed fiber optic networks in TB/hr. For example, a data center might need a connection capable of transferring 10 TB/hr to support its operations.

  • Disk Throughput: Consider the throughput of a modern NVMe solid-state drive (SSD) in a server. It might be able to read or write data at a rate of 1 TB/hr. This is important for applications that require high-speed storage, such as video editing or scientific simulations.

  • Video Streaming: Video streaming services deal with massive amounts of data. The rate at which they can process and deliver video content can be measured in TB/hr. For instance, a streaming platform might be able to process 20 TB/hr of new video uploads.

  • Database Operations: Large database systems often involve bulk data loading and extraction. The rate at which data can be loaded into a database might be measured in TB/hr. For example, a data warehouse might load 2 TB/hr during off-peak hours.

Relevant Laws, Facts, and People

  • Moore's Law: While not directly related to TB/hr, Moore's Law, which observes that the number of transistors on a microchip doubles approximately every two years, has indirectly influenced the increase in data transfer rates and storage capacities. This has led to the need for units like TB/hr to measure these ever-increasing data volumes.
  • Claude Shannon: Claude Shannon, known as the "father of information theory," laid the foundation for understanding the limits of data compression and reliable communication. His work helps us understand the theoretical limits of data transfer rates, including those measured in TB/hr. You can read more about it on Wikipedia here.

Complete bits per second conversion table

Enter # of bits per second
Convert 1 bit/s to other unitsResult
bits per second to Kilobits per second (bit/s to Kb/s)0.001
bits per second to Kibibits per second (bit/s to Kib/s)0.0009765625
bits per second to Megabits per second (bit/s to Mb/s)0.000001
bits per second to Mebibits per second (bit/s to Mib/s)9.5367431640625e-7
bits per second to Gigabits per second (bit/s to Gb/s)1e-9
bits per second to Gibibits per second (bit/s to Gib/s)9.3132257461548e-10
bits per second to Terabits per second (bit/s to Tb/s)1e-12
bits per second to Tebibits per second (bit/s to Tib/s)9.0949470177293e-13
bits per second to bits per minute (bit/s to bit/minute)60
bits per second to Kilobits per minute (bit/s to Kb/minute)0.06
bits per second to Kibibits per minute (bit/s to Kib/minute)0.05859375
bits per second to Megabits per minute (bit/s to Mb/minute)0.00006
bits per second to Mebibits per minute (bit/s to Mib/minute)0.00005722045898438
bits per second to Gigabits per minute (bit/s to Gb/minute)6e-8
bits per second to Gibibits per minute (bit/s to Gib/minute)5.5879354476929e-8
bits per second to Terabits per minute (bit/s to Tb/minute)6e-11
bits per second to Tebibits per minute (bit/s to Tib/minute)5.4569682106376e-11
bits per second to bits per hour (bit/s to bit/hour)3600
bits per second to Kilobits per hour (bit/s to Kb/hour)3.6
bits per second to Kibibits per hour (bit/s to Kib/hour)3.515625
bits per second to Megabits per hour (bit/s to Mb/hour)0.0036
bits per second to Mebibits per hour (bit/s to Mib/hour)0.003433227539063
bits per second to Gigabits per hour (bit/s to Gb/hour)0.0000036
bits per second to Gibibits per hour (bit/s to Gib/hour)0.000003352761268616
bits per second to Terabits per hour (bit/s to Tb/hour)3.6e-9
bits per second to Tebibits per hour (bit/s to Tib/hour)3.2741809263825e-9
bits per second to bits per day (bit/s to bit/day)86400
bits per second to Kilobits per day (bit/s to Kb/day)86.4
bits per second to Kibibits per day (bit/s to Kib/day)84.375
bits per second to Megabits per day (bit/s to Mb/day)0.0864
bits per second to Mebibits per day (bit/s to Mib/day)0.0823974609375
bits per second to Gigabits per day (bit/s to Gb/day)0.0000864
bits per second to Gibibits per day (bit/s to Gib/day)0.00008046627044678
bits per second to Terabits per day (bit/s to Tb/day)8.64e-8
bits per second to Tebibits per day (bit/s to Tib/day)7.8580342233181e-8
bits per second to bits per month (bit/s to bit/month)2592000
bits per second to Kilobits per month (bit/s to Kb/month)2592
bits per second to Kibibits per month (bit/s to Kib/month)2531.25
bits per second to Megabits per month (bit/s to Mb/month)2.592
bits per second to Mebibits per month (bit/s to Mib/month)2.471923828125
bits per second to Gigabits per month (bit/s to Gb/month)0.002592
bits per second to Gibibits per month (bit/s to Gib/month)0.002413988113403
bits per second to Terabits per month (bit/s to Tb/month)0.000002592
bits per second to Tebibits per month (bit/s to Tib/month)0.000002357410266995
bits per second to Bytes per second (bit/s to Byte/s)0.125
bits per second to Kilobytes per second (bit/s to KB/s)0.000125
bits per second to Kibibytes per second (bit/s to KiB/s)0.0001220703125
bits per second to Megabytes per second (bit/s to MB/s)1.25e-7
bits per second to Mebibytes per second (bit/s to MiB/s)1.1920928955078e-7
bits per second to Gigabytes per second (bit/s to GB/s)1.25e-10
bits per second to Gibibytes per second (bit/s to GiB/s)1.1641532182693e-10
bits per second to Terabytes per second (bit/s to TB/s)1.25e-13
bits per second to Tebibytes per second (bit/s to TiB/s)1.1368683772162e-13
bits per second to Bytes per minute (bit/s to Byte/minute)7.5
bits per second to Kilobytes per minute (bit/s to KB/minute)0.0075
bits per second to Kibibytes per minute (bit/s to KiB/minute)0.00732421875
bits per second to Megabytes per minute (bit/s to MB/minute)0.0000075
bits per second to Mebibytes per minute (bit/s to MiB/minute)0.000007152557373047
bits per second to Gigabytes per minute (bit/s to GB/minute)7.5e-9
bits per second to Gibibytes per minute (bit/s to GiB/minute)6.9849193096161e-9
bits per second to Terabytes per minute (bit/s to TB/minute)7.5e-12
bits per second to Tebibytes per minute (bit/s to TiB/minute)6.821210263297e-12
bits per second to Bytes per hour (bit/s to Byte/hour)450
bits per second to Kilobytes per hour (bit/s to KB/hour)0.45
bits per second to Kibibytes per hour (bit/s to KiB/hour)0.439453125
bits per second to Megabytes per hour (bit/s to MB/hour)0.00045
bits per second to Mebibytes per hour (bit/s to MiB/hour)0.0004291534423828
bits per second to Gigabytes per hour (bit/s to GB/hour)4.5e-7
bits per second to Gibibytes per hour (bit/s to GiB/hour)4.1909515857697e-7
bits per second to Terabytes per hour (bit/s to TB/hour)4.5e-10
bits per second to Tebibytes per hour (bit/s to TiB/hour)4.0927261579782e-10
bits per second to Bytes per day (bit/s to Byte/day)10800
bits per second to Kilobytes per day (bit/s to KB/day)10.8
bits per second to Kibibytes per day (bit/s to KiB/day)10.546875
bits per second to Megabytes per day (bit/s to MB/day)0.0108
bits per second to Mebibytes per day (bit/s to MiB/day)0.01029968261719
bits per second to Gigabytes per day (bit/s to GB/day)0.0000108
bits per second to Gibibytes per day (bit/s to GiB/day)0.00001005828380585
bits per second to Terabytes per day (bit/s to TB/day)1.08e-8
bits per second to Tebibytes per day (bit/s to TiB/day)9.8225427791476e-9
bits per second to Bytes per month (bit/s to Byte/month)324000
bits per second to Kilobytes per month (bit/s to KB/month)324
bits per second to Kibibytes per month (bit/s to KiB/month)316.40625
bits per second to Megabytes per month (bit/s to MB/month)0.324
bits per second to Mebibytes per month (bit/s to MiB/month)0.3089904785156
bits per second to Gigabytes per month (bit/s to GB/month)0.000324
bits per second to Gibibytes per month (bit/s to GiB/month)0.0003017485141754
bits per second to Terabytes per month (bit/s to TB/month)3.24e-7
bits per second to Tebibytes per month (bit/s to TiB/month)2.9467628337443e-7

Data transfer rate conversions