Centilitres per second (cl/s) to Cups per second (cup/s) conversion

Centilitres per second to Cups per second conversion table

Centilitres per second (cl/s)Cups per second (cup/s)
00
10.042267528375
20.08453505675
30.126802585125
40.1690701135
50.211337641875
60.25360517025
70.295872698625
80.338140227
90.380407755375
100.42267528375
200.8453505675
301.26802585125
401.690701135
502.11337641875
602.5360517025
702.95872698625
803.38140227
903.80407755375
1004.2267528375
100042.267528375

How to convert centilitres per second to cups per second?

To convert from centilitres per second (cl/s) to cups per second, you need to understand the relationship between these two units of volume. 1 centilitre (cl) is equivalent to 0.01 litres (l), and there are approximately 4.22675 cups in a litre (l). Therefore, to convert centilitres to cups, you can use the following conversion factor:

1 cl=0.01 l×4.22675 cups/l0.0422675 cups\text{1 cl} = 0.01 \text{ l} \times 4.22675 \text{ cups/l} \approx 0.0422675 \text{ cups}

For centilitres per second (cl/s) to cups per second (cups/s), it’s a direct conversion because both units are rates of volume per time. Thus,

1 cl/s=1×0.0422675 cups/s0.0422675 cups/s\text{1 cl/s} = 1 \times 0.0422675 \text{ cups/s} \approx 0.0422675 \text{ cups/s}

Now, let's consider some real-world examples for other quantities of centilitres per second:

  1. Example for 5 cl/s:

5 cl/s×0.0422675 cups/cl0.2113375 cups/s5 \text{ cl/s} \times 0.0422675 \text{ cups/cl} \approx 0.2113375 \text{ cups/s}

Real-world analogy: This is about the rate at which a typical kitchen faucet might dispense water on a medium setting.

  1. Example for 10 cl/s:

10 cl/s×0.0422675 cups/cl0.422675 cups/s10 \text{ cl/s} \times 0.0422675 \text{ cups/cl} \approx 0.422675 \text{ cups/s}

Real-world analogy: This could be the rate at which a larger commercial coffee machine brews coffee.

  1. Example for 50 cl/s:

50 cl/s×0.0422675 cups/cl2.113375 cups/s50 \text{ cl/s} \times 0.0422675 \text{ cups/cl} \approx 2.113375 \text{ cups/s}

Real-world analogy: This might be comparable to the rate at which water is being poured from a large pitcher or jug quite quickly.

  1. Example for 100 cl/s:

100 cl/s×0.0422675 cups/cl4.22675 cups/s100 \text{ cl/s} \times 0.0422675 \text{ cups/cl} \approx 4.22675 \text{ cups/s}

Real-world analogy: This could be close to the rate of water flow from an open fire hydrant.

These conversions and real-world analogies should give you a better sense of how centilitres per second translates to cups per second and what those flow rates look like in practical uses.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cups per second to other unit conversions.

What is centilitres per second?

Centilitres per second (cL/s) is a unit used to measure volume flow rate, indicating the volume of fluid that passes a given point per unit of time. It's a relatively small unit, often used when dealing with precise or low-volume flows.

Understanding Centilitres per Second

Centilitres per second expresses how many centilitres (cL) of a substance move past a specific location in one second. Since 1 litre is equal to 100 centilitres, and a litre is a unit of volume, centilitres per second is derived from volume divided by time.

  • 1 litre (L) = 100 centilitres (cL)
  • 1 cL = 0.01 L

Therefore, 1 cL/s is equivalent to 0.01 litres per second.

Calculation of Volume Flow Rate

Volume flow rate (QQ) can be calculated using the following formula:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volume flow rate
  • VV = Volume (in centilitres)
  • tt = Time (in seconds)

Alternatively, if you know the cross-sectional area (AA) through which the fluid is flowing and its average velocity (vv), the volume flow rate can also be calculated as:

Q=AvQ = A \cdot v

Where:

  • QQ = Volume flow rate (in cL/s if A is in cm2cm^2 and vv is in cm/s)
  • AA = Cross-sectional area
  • vv = Average velocity

For a deeper dive into fluid dynamics and flow rate, resources like Khan Academy's Fluid Mechanics section provide valuable insights.

Real-World Examples

While centilitres per second may not be the most common unit in everyday conversation, it finds applications in specific scenarios:

  • Medical Infusion: Intravenous (IV) drips often deliver fluids at rates measured in millilitres per hour or, equivalently, a fraction of a centilitre per second. For example, delivering 500 mL of saline solution over 4 hours equates to approximately 0.035 cL/s.

  • Laboratory Experiments: Precise fluid dispensing in chemical or biological experiments might involve flow rates measured in cL/s, particularly when using microfluidic devices.

  • Small Engine Fuel Consumption: The fuel consumption of very small engines, like those in model airplanes or some specialized equipment, could be characterized using cL/s.

  • Dosing Pumps: The flow rate of dosing pumps could be measured in centilitres per second.

Associated Laws and People

While there isn't a specific law or well-known person directly associated solely with the unit "centilitres per second," the underlying principles of fluid dynamics and flow rate are governed by various laws and principles, often attributed to:

  • Blaise Pascal: Pascal's Law is fundamental to understanding pressure in fluids.
  • Daniel Bernoulli: Bernoulli's principle relates fluid speed to pressure.
  • Osborne Reynolds: The Reynolds number is used to predict flow patterns, whether laminar or turbulent.

These figures and their contributions have significantly advanced the study of fluid mechanics, providing the foundation for understanding and quantifying flow rates, regardless of the specific units used.

What is cups per second?

Cups per second is a unit of measure for volume flow rate, indicating the amount of volume that passes through a cross-sectional area per unit of time. It's a measure of how quickly something is flowing.

Understanding Cups per Second

Cups per second (cups/s) is a unit used to quantify the volume of a substance that passes through a specific point or area in one second. It's part of a broader family of volume flow rate units, which also includes liters per second, gallons per minute, and cubic meters per hour.

How is it Formed?

Cups per second is derived by dividing a volume measurement (in cups) by a time measurement (in seconds).

  • Volume: A cup is a unit of volume. In the US customary system, a cup is equal to 8 fluid ounces.
  • Time: A second is the base unit of time in the International System of Units (SI).

Therefore, 1 cup/s means that one cup of a substance flows past a certain point in one second.

Calculating Volume Flow Rate

The general formula for volume flow rate (QQ) is:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate.
  • VV is the volume of the substance.
  • tt is the time it takes for that volume to flow.

Conversions

  • 1 US cup = 236.588 milliliters (mL)
  • 1 cup/s = 0.236588 liters per second (L/s)

Real-World Examples and Applications

While cups per second might not be a standard industrial measurement, it can be useful for illustrating flow rates in relatable terms:

  • Pouring Beverages: Imagine a bartender quickly pouring a drink. They might pour approximately 1 cup of liquid in 1 second, equating to a flow rate of 1 cup/s.
  • Small-Scale Liquid Dispensing: A machine dispensing precise amounts of liquid, such as in a pharmaceutical or food production setting, could operate at a rate expressible in cups per second. For instance, filling small medicine cups or condiment portions.
  • Estimating Water Flow: If you are filling a container, you can use cups per second to measure how fast you are filling that container. For example, you can use it to calculate how long it takes for the water to drain from a sink.

Historical Context and Notable Figures

There isn't a specific law or famous figure directly associated with cups per second as a unit. However, the broader study of fluid dynamics has roots in the work of scientists and engineers like:

  • Archimedes: Known for his work on buoyancy and fluid displacement.
  • Daniel Bernoulli: Developed Bernoulli's principle, which relates fluid speed to pressure.
  • Osborne Reynolds: Famous for the Reynolds number, which helps predict flow patterns in fluids.

Practical Implications

Understanding volume flow rate is crucial in various fields:

  • Engineering: Designing pipelines, irrigation systems, and hydraulic systems.
  • Medicine: Measuring blood flow in arteries and veins.
  • Environmental Science: Assessing river discharge and pollution dispersion.

Complete Centilitres per second conversion table

Enter # of Centilitres per second
Convert 1 cl/s to other unitsResult
Centilitres per second to Cubic Millimeters per second (cl/s to mm3/s)10000
Centilitres per second to Cubic Centimeters per second (cl/s to cm3/s)10
Centilitres per second to Cubic Decimeters per second (cl/s to dm3/s)0.01
Centilitres per second to Cubic Decimeters per minute (cl/s to dm3/min)0.6
Centilitres per second to Cubic Decimeters per hour (cl/s to dm3/h)36
Centilitres per second to Cubic Decimeters per day (cl/s to dm3/d)864
Centilitres per second to Cubic Decimeters per year (cl/s to dm3/a)315576
Centilitres per second to Millilitres per second (cl/s to ml/s)10
Centilitres per second to Decilitres per second (cl/s to dl/s)0.1
Centilitres per second to Litres per second (cl/s to l/s)0.01
Centilitres per second to Litres per minute (cl/s to l/min)0.6
Centilitres per second to Litres per hour (cl/s to l/h)36
Centilitres per second to Litres per day (cl/s to l/d)864
Centilitres per second to Litres per year (cl/s to l/a)315576
Centilitres per second to Kilolitres per second (cl/s to kl/s)0.00001
Centilitres per second to Kilolitres per minute (cl/s to kl/min)0.0006
Centilitres per second to Kilolitres per hour (cl/s to kl/h)0.036
Centilitres per second to Cubic meters per second (cl/s to m3/s)0.00001
Centilitres per second to Cubic meters per minute (cl/s to m3/min)0.0006
Centilitres per second to Cubic meters per hour (cl/s to m3/h)0.036
Centilitres per second to Cubic meters per day (cl/s to m3/d)0.864
Centilitres per second to Cubic meters per year (cl/s to m3/a)315.576
Centilitres per second to Cubic kilometers per second (cl/s to km3/s)1e-14
Centilitres per second to Teaspoons per second (cl/s to tsp/s)2.028841362
Centilitres per second to Tablespoons per second (cl/s to Tbs/s)0.676280454
Centilitres per second to Cubic inches per second (cl/s to in3/s)0.6102402537402
Centilitres per second to Cubic inches per minute (cl/s to in3/min)36.614415224414
Centilitres per second to Cubic inches per hour (cl/s to in3/h)2196.8649134648
Centilitres per second to Fluid Ounces per second (cl/s to fl-oz/s)0.338140227
Centilitres per second to Fluid Ounces per minute (cl/s to fl-oz/min)20.28841362
Centilitres per second to Fluid Ounces per hour (cl/s to fl-oz/h)1217.3048172
Centilitres per second to Cups per second (cl/s to cup/s)0.042267528375
Centilitres per second to Pints per second (cl/s to pnt/s)0.0211337641875
Centilitres per second to Pints per minute (cl/s to pnt/min)1.26802585125
Centilitres per second to Pints per hour (cl/s to pnt/h)76.081551075
Centilitres per second to Quarts per second (cl/s to qt/s)0.01056688209375
Centilitres per second to Gallons per second (cl/s to gal/s)0.002641720523438
Centilitres per second to Gallons per minute (cl/s to gal/min)0.1585032314063
Centilitres per second to Gallons per hour (cl/s to gal/h)9.510193884375
Centilitres per second to Cubic feet per second (cl/s to ft3/s)0.0003531468492103
Centilitres per second to Cubic feet per minute (cl/s to ft3/min)0.02118881095262
Centilitres per second to Cubic feet per hour (cl/s to ft3/h)1.2713286571572
Centilitres per second to Cubic yards per second (cl/s to yd3/s)0.00001307949370859
Centilitres per second to Cubic yards per minute (cl/s to yd3/min)0.0007847696225152
Centilitres per second to Cubic yards per hour (cl/s to yd3/h)0.04708617735091

Volume flow rate conversions