Coulombs (c) | Nanocoulombs (nC) |
---|---|
0 | 0 |
1 | 1000000000 |
2 | 2000000000 |
3 | 3000000000 |
4 | 4000000000 |
5 | 5000000000 |
6 | 6000000000 |
7 | 7000000000 |
8 | 8000000000 |
9 | 9000000000 |
10 | 10000000000 |
20 | 20000000000 |
30 | 30000000000 |
40 | 40000000000 |
50 | 50000000000 |
60 | 60000000000 |
70 | 70000000000 |
80 | 80000000000 |
90 | 90000000000 |
100 | 100000000000 |
1000 | 1000000000000 |
Converting Coulombs (C) to Nanocoulombs (nC) involves understanding the relationship between these two units of electric charge. Coulombs is the SI derived unit of electric charge, while nanocoulombs is a smaller unit, representing one billionth of a Coulomb. The conversion is the same for both base 10 and base 2 systems, as it's a decimal-based prefix conversion.
The prefix "nano" represents . Therefore:
Conversely:
To convert Coulombs to Nanocoulombs, multiply the number of Coulombs by .
Step-by-step Example:
Convert 1 C to nC:
Therefore, 1 Coulomb is equal to 1 billion Nanocoulombs.
To convert Nanocoulombs to Coulombs, multiply the number of Nanocoulombs by .
Step-by-step Example:
Convert 1 nC to C:
Therefore, 1 Nanocoulomb is equal to 0.000000001 Coulombs.
The unit Coulomb is named after Charles-Augustin de Coulomb, a French physicist who formulated Coulomb's Law in the late 18th century. This law quantifies the electrostatic force between two electrically charged objects.
Coulomb's Law Formula:
Where:
Coulomb's Law is fundamental to understanding electromagnetism and is analogous to Newton's Law of Universal Gravitation. More information about Coulomb and his law can be found on resources like Wikipedia and Hyperphysics.
While you may not directly encounter values in Coulombs frequently, the principles apply to many electrostatic phenomena:
Electrostatic Discharge (ESD): ESD events, like the spark you feel when touching a doorknob on a dry day, involve the transfer of charge. The charge involved might be on the order of nanocoulombs, but the rapid transfer generates a high voltage. Understanding these charges helps in designing ESD protection for sensitive electronics.
Capacitors: Capacitors store electrical energy by accumulating electric charge on their plates. The amount of charge a capacitor can store at a given voltage is measured in Coulombs (or more practically, microcoulombs or nanocoulombs). For example, a small capacitor in a circuit might store a charge of 10 nC at 5V.
Lightning: Lightning strikes involve massive amounts of electric charge transfer, often in the range of several Coulombs to hundreds of Coulombs. While converting this to nanocoulombs would be an astronomically large number, it helps to appreciate the scale of charge involved in such natural phenomena.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Nanocoulombs to other unit conversions.
The coulomb (symbol: C) is the standard unit of electrical charge in the International System of Units (SI). It represents the amount of charge transported by a current of one ampere flowing for one second. Understanding the coulomb is fundamental to comprehending electrical phenomena.
One coulomb is defined as the quantity of charge that is transported in one second by a steady current of one ampere. Mathematically:
Where:
At the atomic level, the coulomb can also be related to the elementary charge (), which is the magnitude of the electric charge carried by a single proton or electron. One coulomb is approximately equal to elementary charges.
The unit "coulomb" is named after French physicist Charles-Augustin de Coulomb (1736–1806), who formulated Coulomb's Law. This law quantifies the electrostatic force between two charged objects.
Coulomb's Law states that the electric force between two point charges is directly proportional to the product of the magnitudes of their charges and inversely proportional to the square of the distance between them. The formula is:
Where:
For a deeper dive into Coulomb's Law, refer to Hyperphysics's explanation
Understanding the scale of a coulomb requires some perspective. Here are a few examples:
Static Electricity: The static electricity you experience when touching a doorknob after walking across a carpet involves charges much smaller than a coulomb, typically on the order of nanocoulombs () to microcoulombs ().
Lightning: Lightning strikes involve massive amounts of charge transfer, often on the order of several coulombs to tens of coulombs.
Capacitors: Capacitors store electrical energy by accumulating charge on their plates. A typical capacitor might store microcoulombs to millicoulombs () of charge at a given voltage. For example, a 100µF capacitor charged to 12V will have 0.0012 Coulombs of charge.
Where:
Batteries: Batteries provide a source of electrical energy by maintaining a potential difference (voltage) that can drive a current. The amount of charge a battery can deliver over its lifetime is often rated in Ampere-hours (Ah). One Ampere-hour is equal to 3600 Coulombs (since 1 hour = 3600 seconds). Therefore, a 1 Ah battery can theoretically supply 1 Ampere of current for 1 hour, or 3600 Coulombs of charge in that hour.
Nanocoulombs (nC) represent a very small quantity of electric charge. They are part of the International System of Units (SI) and are frequently used when dealing with electrostatics and small-scale electrical phenomena. The prefix "nano" indicates one billionth, making a nanocoulomb one billionth of a coulomb.
A nanocoulomb (nC) is a unit of electric charge equal to one billionth () of a coulomb (C). The coulomb is the SI unit of electric charge, defined as the amount of charge transported by a current of one ampere in one second.
The unit is derived from the standard SI unit, the coulomb, using the prefix "nano-", which signifies . This notation is useful when dealing with very small quantities of charge, making calculations and expressions more manageable. It avoids the need to write out very long decimal numbers.
As you mentioned, the unit "Coulomb" is named after Charles-Augustin de Coulomb, a French physicist who formulated Coulomb's Law in the 18th century. Coulomb's Law quantifies the electrostatic force between two charged objects.
Coulomb's Law states:
Where:
This law is fundamental to understanding the interactions between charged particles and is still essential in electromagnetism.
To explore more about Coulomb and his law, visit Britannica's page on Charles-Augustin de Coulomb.
Convert 1 c to other units | Result |
---|---|
Coulombs to Millicoulombs (c to mC) | 1000 |
Coulombs to Microcoulombs (c to μC) | 1000000 |
Coulombs to Nanocoulombs (c to nC) | 1000000000 |
Coulombs to Picocoulombs (c to pC) | 1000000000000 |