Cubic meters per hour (m3/h) to Cubic meters per second (m3/s) conversion

Cubic meters per hour to Cubic meters per second conversion table

Cubic meters per hour (m3/h)Cubic meters per second (m3/s)
00
10.0002777777777778
20.0005555555555556
30.0008333333333333
40.001111111111111
50.001388888888889
60.001666666666667
70.001944444444444
80.002222222222222
90.0025
100.002777777777778
200.005555555555556
300.008333333333333
400.01111111111111
500.01388888888889
600.01666666666667
700.01944444444444
800.02222222222222
900.025
1000.02777777777778
10000.2777777777778

How to convert cubic meters per hour to cubic meters per second?

Converting cubic meters per hour (m³/h) to cubic meters per second (m³/s) involves understanding the relationship between hours and seconds. There are 3,600 seconds in one hour (since 1 hour = 60 minutes and 1 minute = 60 seconds, 60 x 60 = 3,600). Therefore, to convert from m³/h to m³/s, you need to divide the flow rate by 3,600.

Here’s the conversion step-by-step:

  1. Conversion Formula: 1m3/h=13600m3/s 1 \, \text{m}^3/\text{h} = \frac{1}{3600} \, \text{m}^3/\text{s}

  2. Calculation for 1 m³/h: 1m3/h÷3600=0.00027778m3/s 1 \, \text{m}^3/\text{h} \div 3600 = 0.00027778 \, \text{m}^3/\text{s}

So, 1 cubic meter per hour is approximately 0.00027778 cubic meters per second.

Real-World Examples for Other Quantities

  1. Household Water Supply:

    • Typical household water flow rate: 1,000 liters per hour (1 m³/hour).
      • Conversion: 1,000liters/hour=1m3/h0.00027778m3/s 1,000 \, \text{liters/hour} = 1 \, \text{m}^3/\text{h} \approx 0.00027778 \, \text{m}^3/\text{s}
  2. Industrial Cooling Systems:

    • Large industrial cooling systems might have a flow rate of 36,000 m³/h.
      • Conversion: 36,000m3/h÷3600=10m3/s 36,000 \, \text{m}^3/\text{h} \div 3600 = 10 \, \text{m}^3/\text{s}
  3. Municipal Water Treatment Plant:

    • A medium-sized municipal water treatment plant might process 180,000 m³/h.
      • Conversion: 180,000m3/h÷3600=50m3/s 180,000 \, \text{m}^3/\text{h} \div 3600 = 50 \, \text{m}^3/\text{s}
  4. River Flow:

    • Small river flow rate: 5,400 m³/h.
      • Conversion: 5,400m3/h÷3600=1.5m3/s 5,400 \, \text{m}^3/\text{h} \div 3600 = 1.5 \, \text{m}^3/\text{s}
  5. Fire Hydrant:

    • Typical fire hydrant flow rate: 18,000 liters/hour (18 m³/h).
      • Conversion: 18m3/h÷3600=0.005m3/s 18 \, \text{m}^3/\text{h} \div 3600 = 0.005 \, \text{m}^3/\text{s}

These conversions help in understanding the different applications and how converting between units can be essential for engineering, planning, and operational purposes.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per second to other unit conversions.

What is Cubic meters per hour?

Cubic meters per hour (m3/hm^3/h) is a unit of volumetric flow rate. It quantifies the volume of a substance that passes through a specific area per unit of time, specifically, the number of cubic meters that flow in one hour. It's commonly used for measuring the flow of liquids and gases in various industrial and environmental applications.

Understanding Cubic Meters

A cubic meter (m3m^3) is the SI unit of volume. It represents the amount of space occupied by a cube with sides of 1 meter each. Think of it as a volume equal to filling a cube that is 1 meter wide, 1 meter long, and 1 meter high.

Defining "Per Hour"

"Per hour" indicates the rate at which the cubic meters are moving. So, a flow rate of 1 m3/hm^3/h means that one cubic meter of substance passes a specific point every hour.

Formula and Calculation

The volumetric flow rate (Q) in cubic meters per hour can be calculated using the following formula:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volumetric flow rate (m3/hm^3/h)
  • VV = Volume (m3m^3)
  • tt = Time (hours)

Factors Influencing Cubic Meters per Hour

Several factors can influence the flow rate measured in cubic meters per hour:

  • Pressure: Higher pressure generally leads to a higher flow rate, especially for gases.
  • Viscosity: More viscous fluids flow slower, resulting in a lower flow rate.
  • Pipe Diameter: A wider pipe allows for a higher flow rate, assuming other factors are constant.
  • Temperature: Temperature can affect the density and viscosity of fluids, indirectly influencing the flow rate.

Real-World Examples

  • Water Usage: A household might use 0.5 m3/hm^3/h of water during peak usage times (showering, washing dishes, etc.).
  • Industrial Processes: A chemical plant might pump a reactant liquid at a rate of 5 m3/hm^3/h into a reactor.
  • HVAC Systems: Air conditioners and ventilation systems are often rated by the volume of air they can move, which is expressed in m3/hm^3/h. For example, a residential HVAC system might have a flow rate of 200 m3/hm^3/h.
  • River Discharge: The flow rate of a river can be measured in cubic meters per hour, especially during flood monitoring. It helps to estimate the amount of water that is passing through a cross section of the river.

Historical Context and Notable Figures

While there's no specific "law" or famous historical figure directly associated with the unit "cubic meters per hour," the underlying principles are rooted in fluid dynamics and thermodynamics. Figures like Isaac Newton (laws of motion, viscosity) and Daniel Bernoulli (Bernoulli's principle relating pressure and velocity) laid the groundwork for understanding fluid flow, which is essential for measuring and utilizing flow rates in m3/hm^3/h.

What is cubic meters per second?

What is Cubic meters per second?

Cubic meters per second (m3/sm^3/s) is the SI unit for volume flow rate, representing the volume of fluid passing a given point per unit of time. It's a measure of how quickly a volume of fluid is moving.

Understanding Cubic Meters per Second

Definition and Formation

One cubic meter per second is equivalent to a volume of one cubic meter flowing past a point in one second. It is derived from the base SI units of length (meter) and time (second).

Formula and Calculation

The volume flow rate (QQ) can be defined mathematically as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate in m3/sm^3/s
  • VV is the volume in m3m^3
  • tt is the time in seconds

Alternatively, if you know the cross-sectional area (AA) of the flow and the average velocity (vv) of the fluid, you can calculate the volume flow rate as:

Q=AvQ = A \cdot v

Where:

  • AA is the cross-sectional area in m2m^2
  • vv is the average velocity in m/sm/s

Relevance and Applications

Relationship with Mass Flow Rate

Volume flow rate is closely related to mass flow rate (m˙\dot{m}), which represents the mass of fluid passing a point per unit of time. The relationship between them is:

m˙=ρQ\dot{m} = \rho \cdot Q

Where:

  • m˙\dot{m} is the mass flow rate in kg/skg/s
  • ρ\rho is the density of the fluid in kg/m3kg/m^3
  • QQ is the volume flow rate in m3/sm^3/s

Real-World Examples

  • Rivers and Streams: Measuring the flow rate of rivers helps hydrologists manage water resources and predict floods. The Amazon River, for example, has an average discharge of about 209,000 m3/sm^3/s.
  • Industrial Processes: Chemical plants and refineries use flow meters to control the rate at which liquids and gases are transferred between tanks and reactors. For instance, controlling the flow rate of reactants in a chemical reactor is crucial for achieving the desired product yield.
  • HVAC Systems: Heating, ventilation, and air conditioning systems use fans and ducts to circulate air. The flow rate of air through these systems is measured in m3/sm^3/s to ensure proper ventilation and temperature control.
  • Water Supply: Municipal water supply systems use pumps to deliver water to homes and businesses. The flow rate of water through these systems is measured in m3/sm^3/s to ensure adequate water pressure and availability.
  • Hydropower: Hydroelectric power plants use the flow of water through turbines to generate electricity. The volume flow rate of water is a key factor in determining the power output of the plant. The Three Gorges Dam for example, diverts over 45,000 m3/sm^3/s during peak flow.

Interesting Facts and Historical Context

While no specific law or famous person is directly linked to the unit itself, the concept of fluid dynamics, which uses volume flow rate extensively, is deeply rooted in the work of scientists and engineers like:

  • Daniel Bernoulli: Known for Bernoulli's principle, which relates the pressure, velocity, and elevation of a fluid in a stream.
  • Osborne Reynolds: Famous for the Reynolds number, a dimensionless quantity used to predict the flow regime (laminar or turbulent) in a fluid.

These concepts form the foundation for understanding and applying volume flow rate in various fields.

Complete Cubic meters per hour conversion table

Enter # of Cubic meters per hour
Convert 1 m3/h to other unitsResult
Cubic meters per hour to Cubic Millimeters per second (m3/h to mm3/s)277777.77777778
Cubic meters per hour to Cubic Centimeters per second (m3/h to cm3/s)277.77777777778
Cubic meters per hour to Cubic Decimeters per second (m3/h to dm3/s)0.2777777777778
Cubic meters per hour to Cubic Decimeters per minute (m3/h to dm3/min)16.666666666667
Cubic meters per hour to Cubic Decimeters per hour (m3/h to dm3/h)1000
Cubic meters per hour to Cubic Decimeters per day (m3/h to dm3/d)24000
Cubic meters per hour to Cubic Decimeters per year (m3/h to dm3/a)8766000
Cubic meters per hour to Millilitres per second (m3/h to ml/s)277.77777777778
Cubic meters per hour to Centilitres per second (m3/h to cl/s)27.777777777778
Cubic meters per hour to Decilitres per second (m3/h to dl/s)2.7777777777778
Cubic meters per hour to Litres per second (m3/h to l/s)0.2777777777778
Cubic meters per hour to Litres per minute (m3/h to l/min)16.666666666667
Cubic meters per hour to Litres per hour (m3/h to l/h)1000
Cubic meters per hour to Litres per day (m3/h to l/d)24000
Cubic meters per hour to Litres per year (m3/h to l/a)8766000
Cubic meters per hour to Kilolitres per second (m3/h to kl/s)0.0002777777777778
Cubic meters per hour to Kilolitres per minute (m3/h to kl/min)0.01666666666667
Cubic meters per hour to Kilolitres per hour (m3/h to kl/h)1
Cubic meters per hour to Cubic meters per second (m3/h to m3/s)0.0002777777777778
Cubic meters per hour to Cubic meters per minute (m3/h to m3/min)0.01666666666667
Cubic meters per hour to Cubic meters per day (m3/h to m3/d)24
Cubic meters per hour to Cubic meters per year (m3/h to m3/a)8766
Cubic meters per hour to Cubic kilometers per second (m3/h to km3/s)2.7777777777778e-13
Cubic meters per hour to Teaspoons per second (m3/h to tsp/s)56.3567045
Cubic meters per hour to Tablespoons per second (m3/h to Tbs/s)18.785568166667
Cubic meters per hour to Cubic inches per second (m3/h to in3/s)16.951118159451
Cubic meters per hour to Cubic inches per minute (m3/h to in3/min)1017.0670895671
Cubic meters per hour to Cubic inches per hour (m3/h to in3/h)61024.025374023
Cubic meters per hour to Fluid Ounces per second (m3/h to fl-oz/s)9.3927840833333
Cubic meters per hour to Fluid Ounces per minute (m3/h to fl-oz/min)563.567045
Cubic meters per hour to Fluid Ounces per hour (m3/h to fl-oz/h)33814.0227
Cubic meters per hour to Cups per second (m3/h to cup/s)1.1740980104167
Cubic meters per hour to Pints per second (m3/h to pnt/s)0.5870490052083
Cubic meters per hour to Pints per minute (m3/h to pnt/min)35.2229403125
Cubic meters per hour to Pints per hour (m3/h to pnt/h)2113.37641875
Cubic meters per hour to Quarts per second (m3/h to qt/s)0.2935245026042
Cubic meters per hour to Gallons per second (m3/h to gal/s)0.07338112565104
Cubic meters per hour to Gallons per minute (m3/h to gal/min)4.4028675390625
Cubic meters per hour to Gallons per hour (m3/h to gal/h)264.17205234375
Cubic meters per hour to Cubic feet per second (m3/h to ft3/s)0.009809634700287
Cubic meters per hour to Cubic feet per minute (m3/h to ft3/min)0.5885780820172
Cubic meters per hour to Cubic feet per hour (m3/h to ft3/h)35.314684921034
Cubic meters per hour to Cubic yards per second (m3/h to yd3/s)0.000363319269683
Cubic meters per hour to Cubic yards per minute (m3/h to yd3/min)0.02179915618098
Cubic meters per hour to Cubic yards per hour (m3/h to yd3/h)1.3079493708587

Volume flow rate conversions