gigahertz (GHz) | megahertz (MHz) |
---|---|
0 | 0 |
1 | 1000 |
2 | 2000 |
3 | 3000 |
4 | 4000 |
5 | 5000 |
6 | 6000 |
7 | 7000 |
8 | 8000 |
9 | 9000 |
10 | 10000 |
20 | 20000 |
30 | 30000 |
40 | 40000 |
50 | 50000 |
60 | 60000 |
70 | 70000 |
80 | 80000 |
90 | 90000 |
100 | 100000 |
1000 | 1000000 |
Converting between gigahertz (GHz) and megahertz (MHz) involves understanding the relationship between these units of frequency. This conversion is the same for both base 10 (decimal) and base 2 (binary) systems, as it deals with the prefixes Giga and Mega, which are powers of 10.
A hertz (Hz) is the base unit of frequency, representing one cycle per second. The prefixes "Mega" and "Giga" denote multiples of this base unit.
Therefore:
To convert GHz to MHz, multiply the GHz value by 1000.
For 1 GHz:
To convert MHz to GHz, divide the MHz value by 1000.
For 1 MHz:
Gigahertz and megahertz are commonly used to measure the clock speeds of computer processors, the frequencies of radio waves, and other electromagnetic signals.
The development and standardization of units like Hertz and its multiples (MHz, GHz) are tied to the advancement of radio and telecommunications. Heinrich Hertz, after whom the unit Hertz is named, was a German physicist who proved the existence of electromagnetic waves in 1886. His work laid the foundation for wireless communication and broadcasting technologies, making frequency measurement crucial. The prefixes Mega and Giga became essential as technology advanced, enabling the measurement of increasingly higher frequencies.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the megahertz to other unit conversions.
Here's a breakdown of gigahertz, its formation, related concepts, and examples:
Gigahertz (GHz) is a unit of frequency, measuring the number of cycles per second. It's commonly used to quantify the clock rate of computer processors, the frequencies of radio waves, and the speed of data transmission.
One gigahertz (1 GHz) equals one billion hertz (1,000,000,000 Hz). Hertz (Hz) is the base unit of frequency in the International System of Units (SI), defined as the number of cycles per second. Thus, 1 GHz represents one billion cycles per second.
The term "gigahertz" is formed by combining the SI prefix "giga-" with the unit "hertz."
Therefore, gigahertz literally means "one billion cycles per second."
While the unit is named after Heinrich Hertz for his work on electromagnetic waves, the term "gigahertz" itself is a modern adaptation that came about with advancements in technology capable of operating at such high frequencies. Hertz demonstrated the existence of electromagnetic waves in 1887, proving James Clerk Maxwell's theory. His work laid the foundation for radio technology.
Megahertz (MHz) is a unit of measurement for frequency, specifically the rate at which something repeats per second. It's commonly used to describe the speed of processors, the frequency of radio waves, and other oscillating phenomena. It's part of the International System of Units (SI).
Before diving into megahertz, it's important to understand its base unit, the hertz (Hz). One hertz represents one cycle per second. So, if something oscillates at a frequency of 1 Hz, it completes one full cycle every second. The hertz is named after Heinrich Hertz, a German physicist who demonstrated the existence of electromagnetic waves in the late 19th century.
The prefix "mega-" indicates a factor of one million (). Therefore, one megahertz (MHz) is equal to one million hertz.
This means that something oscillating at 1 MHz completes one million cycles per second.
Megahertz is formed by multiplying the base unit, hertz (Hz), by . It's a convenient unit for expressing high frequencies in a more manageable way. For example, instead of saying a CPU operates at 3,000,000,000 Hz, it's much simpler to say it operates at 3 GHz (gigahertz), where 1 GHz = 1000 MHz.
Megahertz is a crucial unit in various fields, particularly in electronics and telecommunications.
Here are some real-world examples to illustrate the concept of megahertz:
Heinrich Hertz (1857 – 1894) was a German physicist who proved the existence of electromagnetic waves, theorized by James Clerk Maxwell. He built an apparatus to produce and detect these waves, demonstrating that they could be transmitted over a distance. The unit of frequency, hertz (Hz), was named in his honor in 1930. His work laid the foundation for the development of radio, television, and other wireless communication technologies.
Convert 1 GHz to other units | Result |
---|---|
gigahertz to millihertz (GHz to mHz) | 1000000000000 |
gigahertz to hertz (GHz to Hz) | 1000000000 |
gigahertz to kilohertz (GHz to kHz) | 1000000 |
gigahertz to megahertz (GHz to MHz) | 1000 |
gigahertz to terahertz (GHz to THz) | 0.001 |
gigahertz to rotations per minute (GHz to rpm) | 60000000000 |
gigahertz to degrees per second (GHz to deg/s) | 360000000000 |
gigahertz to radians per second (GHz to rad/s) | 6283185307.1796 |