hertz (Hz) to terahertz (THz) conversion

hertz to terahertz conversion table

hertz (Hz)terahertz (THz)
00
11e-12
22e-12
33e-12
44e-12
55e-12
66e-12
77e-12
88e-12
99e-12
101e-11
202e-11
303e-11
404e-11
505e-11
606e-11
707e-11
808e-11
909e-11
1001e-10
10001e-9

How to convert hertz to terahertz?

Converting between hertz (Hz) and terahertz (THz) involves understanding the relationship between these units of frequency. Here's a breakdown:

Understanding Hertz and Terahertz

Hertz (Hz) is the standard unit of frequency, representing one cycle per second. Terahertz (THz) is a larger unit, representing 101210^{12} cycles per second. The relationship is:

1 THz=1012 Hz1 \text{ THz} = 10^{12} \text{ Hz}

Converting 1 Hz to Terahertz

To convert 1 Hz to THz, you divide by 101210^{12}:

1 Hz=11012 THz=1012 THz1 \text{ Hz} = \frac{1}{10^{12}} \text{ THz} = 10^{-12} \text{ THz}

So, 1 Hz is equal to 101210^{-12} THz (or 0.000000000001 THz).

Converting 1 THz to Hertz

To convert 1 THz to Hz, you multiply by 101210^{12}:

1 THz=1×1012 Hz1 \text{ THz} = 1 \times 10^{12} \text{ Hz}

Therefore, 1 THz equals 101210^{12} Hz (or 1,000,000,000,000 Hz).

Interesting Facts and Laws

The concept of frequency is fundamental to physics and electrical engineering. Heinrich Hertz, after whom the unit hertz is named, was a pioneering physicist who proved the existence of electromagnetic waves. His experiments validated James Clerk Maxwell's theory of electromagnetism. The terahertz range is of particular interest in modern technology because it sits between the microwave and infrared portions of the electromagnetic spectrum, offering potential for high-bandwidth communication and advanced imaging techniques.

Real-World Examples of Frequency Conversions

While direct conversion between Hz and THz is less common in everyday scenarios, understanding frequency ranges is essential in various fields:

  1. Radio Frequencies: Radio waves, used in broadcasting and communication, range from kilohertz (kHz) to gigahertz (GHz).
  2. Microwave Ovens: Operate at frequencies around 2.45 GHz.
  3. Medical Imaging: MRI machines use radio frequencies in the MHz range, while terahertz imaging is an emerging field for non-invasive diagnostics.
  4. Wireless Communication: Wi-Fi and cellular communication use frequencies in the GHz range. The trend is moving towards higher frequencies, including terahertz, to support faster data transfer rates.

By understanding these conversions, you can appreciate the vast range of frequencies used in modern technology and scientific research.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the terahertz to other unit conversions.

What is hertz?

Hertz (Hz) is the standard unit of frequency in the International System of Units (SI). It expresses the number of cycles of a periodic phenomenon per second. Frequency is a fundamental concept in physics and engineering, describing how often an event repeats.

Understanding Hertz

One hertz means that an event repeats once per second. A higher hertz value indicates a faster rate of repetition. This applies to various phenomena, including oscillations, waves, and vibrations.

Formation of Hertz

Hertz is a derived unit, meaning it is defined in terms of other base SI units. Specifically:

1 Hz=1 s11 \text{ Hz} = 1 \text{ s}^{-1}

This means that one hertz is equivalent to one cycle per second. The unit is named after Heinrich Rudolf Hertz, a German physicist who made significant contributions to the understanding of electromagnetic waves.

Heinrich Hertz and Electromagnetism

Heinrich Hertz (1857-1894) was the first to conclusively prove the existence of electromagnetic waves, which had been predicted by James Clerk Maxwell. He built an apparatus to produce and detect these waves, demonstrating that they travel at the speed of light and exhibit properties such as reflection and refraction. Hertz's work laid the foundation for the development of radio, television, and other wireless communication technologies. For more information about Heinrich Rudolf Hertz read his biography on Wikipedia.

Real-World Examples of Hertz

  • Alternating Current (AC): In most countries, the frequency of AC power is either 50 Hz or 60 Hz. This refers to how many times the current changes direction per second. In the United States, the standard is 60 Hz.

  • CPU Clock Speed: The clock speed of a computer's central processing unit (CPU) is measured in gigahertz (GHz). For example, a 3 GHz processor completes 3 billion cycles per second. This clock speed governs how quickly the CPU can execute instructions.

  • Radio Frequencies: Radio waves are electromagnetic waves used for communication. Their frequencies are measured in hertz (Hz), kilohertz (kHz), megahertz (MHz), and gigahertz (GHz). For example, FM radio stations broadcast in the MHz range, while mobile phones use GHz frequencies.

  • Audio Frequencies: The range of human hearing is typically between 20 Hz and 20,000 Hz (20 kHz). Lower frequencies correspond to bass sounds, while higher frequencies correspond to treble sounds. Musical instruments produce a range of frequencies within this spectrum.

  • Oscillators: Oscillators are electronic circuits that produce periodic signals. Their frequencies are measured in hertz and are used in various applications, such as clocks, timers, and signal generators. The frequency of an oscillator determines the rate at which it produces these signals.

Interesting Facts

  • Prefixes are commonly used with hertz to denote larger frequencies:

    • 1 kHz (kilohertz) = 1,000 Hz
    • 1 MHz (megahertz) = 1,000,000 Hz
    • 1 GHz (gigahertz) = 1,000,000,000 Hz
  • The inverse of frequency (1/f) is the period (T), which is the time it takes for one complete cycle to occur. The period is measured in seconds.

T=1fT = \frac{1}{f}

What is Terahertz (THz)?

Terahertz (THz) is a unit of frequency equal to one trillion (10^12) hertz. In other words:

1THz=1012Hz1 THz = 10^{12} Hz

Frequency, measured in Hertz (Hz), represents the number of complete cycles of a wave that occur in one second. Therefore, a terahertz wave oscillates one trillion times per second. Terahertz radiation lies in the electromagnetic spectrum between the infrared and microwave bands, typically defined as the range from 0.1 to 10 THz.

How is Terahertz Formed?

Terahertz waves can be generated through various physical processes and technologies, including:

  • Electronic methods: Using high-speed electronic circuits and devices like Gunn diodes and photomixers. These create oscillating currents at terahertz frequencies.
  • Optical methods: Employing lasers and nonlinear optical crystals to generate terahertz waves through processes like difference frequency generation (DFG).
  • Photoconductive antennas: Illuminating a semiconductor material with a short laser pulse, generating a burst of current that radiates terahertz waves.
  • Synchrotron radiation: Accelerating charged particles to near the speed of light in a synchrotron produces broad-spectrum electromagnetic radiation, including terahertz.

Interesting Facts and Applications of Terahertz

  • Non-ionizing Radiation: Unlike X-rays, terahertz radiation is non-ionizing, meaning it doesn't have enough energy to remove electrons from atoms and damage DNA, making it potentially safer for certain applications.

  • Water Absorption: Terahertz waves are strongly absorbed by water. This property is both a challenge and an advantage. It limits their range in humid environments but also allows them to be used for moisture sensing.

  • Security Screening: Terahertz imaging can penetrate clothing and other materials, making it useful for security screening at airports and other locations. It can detect concealed weapons and explosives.

  • Medical Imaging: Terahertz imaging is being explored for medical applications, such as detecting skin cancer and monitoring wound healing. Its non-ionizing nature is a significant benefit.

  • Materials Science: Terahertz spectroscopy is used to characterize the properties of various materials, including semiconductors, polymers, and pharmaceuticals.

Terahertz in Real-World Examples:

To understand the scale of terahertz, let's compare it to other frequencies:

  • Radio Frequencies: FM radio broadcasts operate at around 100 MHz (0.0001 THz).
  • Microwaves: Microwave ovens use frequencies around 2.45 GHz (0.00245 THz).
  • Infrared: Infrared radiation used in remote controls has frequencies around 30 THz.
  • Visible Light: Visible light spans frequencies from approximately 430 THz (red) to 790 THz (violet).
  • Cell phones Cell phones operate between 0.7 to 3 GHz.

Therefore, terahertz waves fill the "terahertz gap" between commonly used radio/microwave frequencies and infrared light.

Well-Known People Associated with Terahertz

While no single person is universally credited as the "discoverer" of terahertz radiation, several scientists have made significant contributions to its understanding and development:

  • Joseph von Fraunhofer (Early 1800s): Although not directly working with terahertz, his discovery of dark lines in the solar spectrum laid groundwork for spectroscopy, which is fundamental to terahertz applications.

  • Jagadish Chandra Bose (Late 1800s): A pioneer in microwave and millimeter wave research, Bose's work with generating and detecting electromagnetic waves at these frequencies paved the way for terahertz technology.

  • Martin Nuss (Late 1980s - Present): A leading researcher in terahertz science and technology, Nuss has made significant contributions to terahertz imaging and spectroscopy.

  • Xi-Cheng Zhang (1990s - Present): Zhang is renowned for his work on terahertz time-domain spectroscopy (THz-TDS) and terahertz imaging.

Complete hertz conversion table

Enter # of hertz
Convert 1 Hz to other unitsResult
hertz to millihertz (Hz to mHz)1000
hertz to kilohertz (Hz to kHz)0.001
hertz to megahertz (Hz to MHz)0.000001
hertz to gigahertz (Hz to GHz)1e-9
hertz to terahertz (Hz to THz)1e-12
hertz to rotations per minute (Hz to rpm)60
hertz to degrees per second (Hz to deg/s)360
hertz to radians per second (Hz to rad/s)6.2831853071796