kilohertz (kHz) | gigahertz (GHz) |
---|---|
0 | 0 |
1 | 0.000001 |
2 | 0.000002 |
3 | 0.000003 |
4 | 0.000004 |
5 | 0.000005 |
6 | 0.000006 |
7 | 0.000007 |
8 | 0.000008 |
9 | 0.000009 |
10 | 0.00001 |
20 | 0.00002 |
30 | 0.00003 |
40 | 0.00004 |
50 | 0.00005 |
60 | 0.00006 |
70 | 0.00007 |
80 | 0.00008 |
90 | 0.00009 |
100 | 0.0001 |
1000 | 0.001 |
Converting between kilohertz (kHz) and gigahertz (GHz) involves understanding the relationship between these units of frequency. This conversion is the same whether you're using base 10 or base 2 since these prefixes are defined the same way across both systems.
Kilohertz and gigahertz are both units used to measure frequency, which represents the number of cycles per second. The prefix "kilo" means (thousand), and the prefix "giga" means (billion). Therefore, 1 GHz is equal to kHz (one million kHz).
To convert from kHz to GHz, you divide the number of kHz by .
Step-by-step:
So,
To convert from GHz to kHz, you multiply the number of GHz by .
Step-by-step:
So,
Radio Frequencies: Radio frequencies are commonly expressed in kHz and MHz (megahertz), but higher frequencies like those used in satellite communication and advanced radar systems are often expressed in GHz. For instance, AM radio operates in the kHz range (e.g., 530 kHz to 1710 kHz), while satellite TV operates in the GHz range (e.g., 12 GHz).
Computer Processors: The clock speed of computer processors is a measure of how many instructions the processor can execute per second. Modern CPUs operate in the GHz range (e.g., 3 GHz to 5 GHz).
Wireless Communication: Wi-Fi and Bluetooth technologies use frequencies in the GHz range (e.g., 2.4 GHz and 5 GHz bands).
Medical Equipment: MRI machines use radio frequencies, and some advanced MRI systems operate at frequencies in the GHz range to achieve higher resolution imaging.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the gigahertz to other unit conversions.
Kilohertz (kHz) is a unit used to measure frequency, particularly in the context of sound waves, radio waves, and alternating currents. Understanding what it represents requires a grasp of frequency itself.
Frequency, in essence, is the number of times a repeating event occurs per unit of time. It's commonly measured in Hertz (Hz), where 1 Hz signifies one cycle per second.
A kilohertz (kHz) represents one thousand cycles per second. Mathematically, this can be expressed as:
Kilohertz is formed by applying the metric prefix "kilo-" to the base unit of frequency, Hertz. The prefix "kilo-" signifies a factor of or 1,000. Therefore, combining "kilo-" with "Hertz" indicates 1,000 Hertz.
Kilohertz frequencies are commonly encountered in various applications, including:
While no specific law is directly tied to the kilohertz unit itself, frequency, and hence kilohertz, are central to many scientific and engineering principles. Heinrich Hertz, after whom the Hertz unit is named, made groundbreaking contributions to understanding electromagnetic waves. His experiments in the late 19th century confirmed James Clerk Maxwell's theories, paving the way for radio communication.
Kilohertz is a unit of frequency representing 1,000 cycles per second. It's prevalent in fields such as radio communication, audio processing, and ultrasonic technologies. The concept of frequency is crucial in physics and engineering, with pioneers like Heinrich Hertz significantly contributing to our understanding of electromagnetic phenomena.
Here's a breakdown of gigahertz, its formation, related concepts, and examples:
Gigahertz (GHz) is a unit of frequency, measuring the number of cycles per second. It's commonly used to quantify the clock rate of computer processors, the frequencies of radio waves, and the speed of data transmission.
One gigahertz (1 GHz) equals one billion hertz (1,000,000,000 Hz). Hertz (Hz) is the base unit of frequency in the International System of Units (SI), defined as the number of cycles per second. Thus, 1 GHz represents one billion cycles per second.
The term "gigahertz" is formed by combining the SI prefix "giga-" with the unit "hertz."
Therefore, gigahertz literally means "one billion cycles per second."
While the unit is named after Heinrich Hertz for his work on electromagnetic waves, the term "gigahertz" itself is a modern adaptation that came about with advancements in technology capable of operating at such high frequencies. Hertz demonstrated the existence of electromagnetic waves in 1887, proving James Clerk Maxwell's theory. His work laid the foundation for radio technology.
Convert 1 kHz to other units | Result |
---|---|
kilohertz to millihertz (kHz to mHz) | 1000000 |
kilohertz to hertz (kHz to Hz) | 1000 |
kilohertz to megahertz (kHz to MHz) | 0.001 |
kilohertz to gigahertz (kHz to GHz) | 0.000001 |
kilohertz to terahertz (kHz to THz) | 1e-9 |
kilohertz to rotations per minute (kHz to rpm) | 60000 |
kilohertz to degrees per second (kHz to deg/s) | 360000 |
kilohertz to radians per second (kHz to rad/s) | 6283.1853071796 |