Kilolitres per second (kl/s) | Cubic inches per minute (in3/min) |
---|---|
0 | 0 |
1 | 3661441.5224414 |
2 | 7322883.0448828 |
3 | 10984324.567324 |
4 | 14645766.089766 |
5 | 18307207.612207 |
6 | 21968649.134648 |
7 | 25630090.65709 |
8 | 29291532.179531 |
9 | 32952973.701973 |
10 | 36614415.224414 |
20 | 73228830.448828 |
30 | 109843245.67324 |
40 | 146457660.89766 |
50 | 183072076.12207 |
60 | 219686491.34648 |
70 | 256300906.5709 |
80 | 292915321.79531 |
90 | 329529737.01973 |
100 | 366144152.24414 |
1000 | 3661441522.4414 |
To convert 1 kilolitre per second (kL/s) to cubic inches per minute (in³/min), we need to follow these steps:
Convert kilolitres to litres:
Convert seconds to minutes:
Convert litres to cubic inches:
Now let's piece these conversions together:
Start with 1 kL/s:
Convert to litres per minute:
Convert litres to cubic inches:
So, 1 kilolitre per second is approximately 3,661,422 cubic inches per minute.
0.5 kL/s (which is 500 litres per second):
2 kL/s (which is 2,000 litres per second):
10 kL/s (which is 10,000 litres per second):
By understanding these conversions and real-world applications, it becomes easier to visualize and work with different units of volume flow rate in various practical scenarios.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic inches per minute to other unit conversions.
Kilolitres per second (kL/s) is a unit used to measure volume flow rate, indicating the volume of fluid that passes through a given area per unit of time. Understanding this unit is crucial in various fields, from water management to industrial processes. Let's delve into its definition, formation, and real-world applications.
A kilolitre per second (kL/s) represents the volume of 1,000 liters (one cubic meter) passing a specific point in one second. This unit is commonly used to quantify large flow rates, such as those encountered in rivers, pipelines, and industrial processes.
Kilolitres per second is derived from the metric units of volume (litres or cubic meters) and time (seconds). The relationship is straightforward:
To convert from other flow rate units, you can use the following relationships:
Kilolitres per second (kL/s) as a flow rate unit is used in fields of engineering, hydrology and in general anywhere fluids are measured
Here are some real-world examples to illustrate the scale of kilolitres per second:
While not directly related to a specific law or person associated solely with kilolitres per second, the concept of hydraulic jump in fluid dynamics is relevant. A hydraulic jump is a phenomenon where rapidly flowing liquid suddenly changes to a slower flow with a significant increase in depth. The flow rate, often measured in units like kL/s or , is a critical factor in determining the characteristics of a hydraulic jump. Hydraulic Jump is a good start to understand this concept.
Cubic inches per minute (in$^3$/min or CFM) is a unit of measure for volume flow rate. It represents the volume of a substance (typically a gas or liquid) that flows through a given area per minute, with the volume measured in cubic inches. It's a common unit in engineering and manufacturing, especially in the United States.
A cubic inch is a unit of volume equal to the volume of a cube with sides one inch long. It's part of the imperial system of measurement.
Volume flow rate, generally denoted as , is the volume of fluid which passes per unit time. The SI unit for volume flow rate is cubic meters per second ().
Cubic inches per minute is formed by combining a unit of volume (cubic inches) with a unit of time (minutes). This describes how many cubic inches of a substance pass a specific point or through a specific area in one minute.
Where:
Cubic inches per minute is used across various industries. Here are some real-world examples:
It's important to understand how cubic inches per minute relates to other units of flow rate:
While there's no specific law directly associated with cubic inches per minute itself, the underlying principles of fluid dynamics that govern volume flow rate are described by fundamental laws such as the Navier-Stokes equations. These equations, developed in the 19th century, describe the motion of viscous fluids and are essential for understanding fluid flow in a wide range of applications. For more information you can read about it in the following Navier-Stokes Equations page from NASA.
Convert 1 kl/s to other units | Result |
---|---|
Kilolitres per second to Cubic Millimeters per second (kl/s to mm3/s) | 1000000000 |
Kilolitres per second to Cubic Centimeters per second (kl/s to cm3/s) | 1000000 |
Kilolitres per second to Cubic Decimeters per second (kl/s to dm3/s) | 1000 |
Kilolitres per second to Cubic Decimeters per minute (kl/s to dm3/min) | 60000 |
Kilolitres per second to Cubic Decimeters per hour (kl/s to dm3/h) | 3600000 |
Kilolitres per second to Cubic Decimeters per day (kl/s to dm3/d) | 86400000 |
Kilolitres per second to Cubic Decimeters per year (kl/s to dm3/a) | 31557600000 |
Kilolitres per second to Millilitres per second (kl/s to ml/s) | 1000000 |
Kilolitres per second to Centilitres per second (kl/s to cl/s) | 100000 |
Kilolitres per second to Decilitres per second (kl/s to dl/s) | 10000 |
Kilolitres per second to Litres per second (kl/s to l/s) | 1000 |
Kilolitres per second to Litres per minute (kl/s to l/min) | 60000 |
Kilolitres per second to Litres per hour (kl/s to l/h) | 3600000 |
Kilolitres per second to Litres per day (kl/s to l/d) | 86400000 |
Kilolitres per second to Litres per year (kl/s to l/a) | 31557600000 |
Kilolitres per second to Kilolitres per minute (kl/s to kl/min) | 60 |
Kilolitres per second to Kilolitres per hour (kl/s to kl/h) | 3600 |
Kilolitres per second to Cubic meters per second (kl/s to m3/s) | 1 |
Kilolitres per second to Cubic meters per minute (kl/s to m3/min) | 60 |
Kilolitres per second to Cubic meters per hour (kl/s to m3/h) | 3600 |
Kilolitres per second to Cubic meters per day (kl/s to m3/d) | 86400 |
Kilolitres per second to Cubic meters per year (kl/s to m3/a) | 31557600 |
Kilolitres per second to Cubic kilometers per second (kl/s to km3/s) | 1e-9 |
Kilolitres per second to Teaspoons per second (kl/s to tsp/s) | 202884.1362 |
Kilolitres per second to Tablespoons per second (kl/s to Tbs/s) | 67628.0454 |
Kilolitres per second to Cubic inches per second (kl/s to in3/s) | 61024.025374023 |
Kilolitres per second to Cubic inches per minute (kl/s to in3/min) | 3661441.5224414 |
Kilolitres per second to Cubic inches per hour (kl/s to in3/h) | 219686491.34648 |
Kilolitres per second to Fluid Ounces per second (kl/s to fl-oz/s) | 33814.0227 |
Kilolitres per second to Fluid Ounces per minute (kl/s to fl-oz/min) | 2028841.362 |
Kilolitres per second to Fluid Ounces per hour (kl/s to fl-oz/h) | 121730481.72 |
Kilolitres per second to Cups per second (kl/s to cup/s) | 4226.7528375 |
Kilolitres per second to Pints per second (kl/s to pnt/s) | 2113.37641875 |
Kilolitres per second to Pints per minute (kl/s to pnt/min) | 126802.585125 |
Kilolitres per second to Pints per hour (kl/s to pnt/h) | 7608155.1075 |
Kilolitres per second to Quarts per second (kl/s to qt/s) | 1056.688209375 |
Kilolitres per second to Gallons per second (kl/s to gal/s) | 264.17205234375 |
Kilolitres per second to Gallons per minute (kl/s to gal/min) | 15850.323140625 |
Kilolitres per second to Gallons per hour (kl/s to gal/h) | 951019.3884375 |
Kilolitres per second to Cubic feet per second (kl/s to ft3/s) | 35.314684921034 |
Kilolitres per second to Cubic feet per minute (kl/s to ft3/min) | 2118.8810952621 |
Kilolitres per second to Cubic feet per hour (kl/s to ft3/h) | 127132.86571572 |
Kilolitres per second to Cubic yards per second (kl/s to yd3/s) | 1.3079493708587 |
Kilolitres per second to Cubic yards per minute (kl/s to yd3/min) | 78.476962251525 |
Kilolitres per second to Cubic yards per hour (kl/s to yd3/h) | 4708.6177350915 |