Litres per hour (l/h) | Cubic meters per minute (m3/min) |
---|---|
0 | 0 |
1 | 0.00001666666666667 |
2 | 0.00003333333333333 |
3 | 0.00005 |
4 | 0.00006666666666667 |
5 | 0.00008333333333333 |
6 | 0.0001 |
7 | 0.0001166666666667 |
8 | 0.0001333333333333 |
9 | 0.00015 |
10 | 0.0001666666666667 |
20 | 0.0003333333333333 |
30 | 0.0005 |
40 | 0.0006666666666667 |
50 | 0.0008333333333333 |
60 | 0.001 |
70 | 0.001166666666667 |
80 | 0.001333333333333 |
90 | 0.0015 |
100 | 0.001666666666667 |
1000 | 0.01666666666667 |
To convert from litres per hour (L/h) to cubic meters per minute (m³/min), you need to understand the conversion factors between the units involved:
Litres to Cubic Meters:
Hours to Minutes:
Given these conversion factors, you can set up the conversion:
From litres to cubic meters: Since 1 litre is cubic meters:
From hours to minutes: Since 1 hour is 60 minutes:
So, .
Let's convert some other quantities of L/h to m³/min:
Example: 100 L/h
Example: 1,200 L/h
Example: 3,600 L/h
Household Water Supply: A common residential water supply might be at a rate of around 1,200 L/h (0.02 m³/min), sufficient for regular daily activities like cooking, cleaning, and bathing.
Agricultural irrigation systems: Large irrigation systems might require water to be delivered at a rate of several thousand litres per hour. For example, 3,600 L/h (0.06 m³/min) could be sufficient to irrigate larger fields.
Aquarium Filtration: A medium-sized aquarium filter might operate at around 500 L/h (≈0.0083 m³/min) to maintain water quality and clarity.
By understanding these conversions and applying them to real-world examples, you can better grasp the practical implications of different flow rates in various contexts.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per minute to other unit conversions.
Litres per hour (L/h) is a common unit for measuring the rate at which a volume of liquid flows. Understanding its meaning and applications can be helpful in various fields.
Litres per hour (L/h) is a unit of volume flow rate. It indicates the volume of liquid, measured in litres, that passes a specific point in one hour. In simpler terms, it tells you how many litres of a substance are moving per hour.
The unit is formed by combining two fundamental units:
Therefore, 1 L/h means that one litre of a substance flows past a point in one hour.
The flow rate () in litres per hour can be calculated using the following formula:
Where:
Litres per hour are used in many practical applications.
While there isn't a specific "law" directly associated with litres per hour, the concept of flow rate is central to fluid dynamics, which is governed by laws like the Navier-Stokes equations. These equations describe the motion of viscous fluids and are fundamental in engineering and physics.
Often, you might need to convert between L/h and other flow rate units. Here are some common conversions:
Cubic meters per minute () is a unit used to express volume flow rate, indicating the volume of a substance that passes through a specific area per minute. It's commonly used to measure fluid flow rates in various applications.
Cubic meters per minute is derived from two fundamental SI units: volume (cubic meters, ) and time (minutes, min). One cubic meter is the volume of a cube with sides of one meter in length.
Volume flow rate () is defined as the volume () of a fluid passing through a cross-sectional area per unit of time ().
Where:
HVAC Systems: Measuring the airflow rate in ventilation systems. For example, a building's ventilation system might require an airflow rate of 50 to ensure adequate air exchange.
Industrial Processes: Assessing the pumping rate of liquids in manufacturing plants. Example, a pump might be rated to transfer water at a rate of 10 .
Water Treatment: Determining the flow rate of water through filtration systems. Example, a water treatment plant may process water at a rate of 25 .
Gas Flow in Pipelines: Measuring the flow rate of natural gas through a pipeline. For example, a natural gas pipeline might transport gas at a rate of 1000 .
The concept of volume flow rate is essential in hydraulics and fluid dynamics. Understanding the flow rate is crucial for designing and optimizing systems that involve fluid transport, such as pipelines, pumps, and hydraulic machinery.
Convert 1 l/h to other units | Result |
---|---|
Litres per hour to Cubic Millimeters per second (l/h to mm3/s) | 277.77777777778 |
Litres per hour to Cubic Centimeters per second (l/h to cm3/s) | 0.2777777777778 |
Litres per hour to Cubic Decimeters per second (l/h to dm3/s) | 0.0002777777777778 |
Litres per hour to Cubic Decimeters per minute (l/h to dm3/min) | 0.01666666666667 |
Litres per hour to Cubic Decimeters per hour (l/h to dm3/h) | 1 |
Litres per hour to Cubic Decimeters per day (l/h to dm3/d) | 24 |
Litres per hour to Cubic Decimeters per year (l/h to dm3/a) | 8766 |
Litres per hour to Millilitres per second (l/h to ml/s) | 0.2777777777778 |
Litres per hour to Centilitres per second (l/h to cl/s) | 0.02777777777778 |
Litres per hour to Decilitres per second (l/h to dl/s) | 0.002777777777778 |
Litres per hour to Litres per second (l/h to l/s) | 0.0002777777777778 |
Litres per hour to Litres per minute (l/h to l/min) | 0.01666666666667 |
Litres per hour to Litres per day (l/h to l/d) | 24 |
Litres per hour to Litres per year (l/h to l/a) | 8766 |
Litres per hour to Kilolitres per second (l/h to kl/s) | 2.7777777777778e-7 |
Litres per hour to Kilolitres per minute (l/h to kl/min) | 0.00001666666666667 |
Litres per hour to Kilolitres per hour (l/h to kl/h) | 0.001 |
Litres per hour to Cubic meters per second (l/h to m3/s) | 2.7777777777778e-7 |
Litres per hour to Cubic meters per minute (l/h to m3/min) | 0.00001666666666667 |
Litres per hour to Cubic meters per hour (l/h to m3/h) | 0.001 |
Litres per hour to Cubic meters per day (l/h to m3/d) | 0.024 |
Litres per hour to Cubic meters per year (l/h to m3/a) | 8.766 |
Litres per hour to Cubic kilometers per second (l/h to km3/s) | 2.7777777777778e-16 |
Litres per hour to Teaspoons per second (l/h to tsp/s) | 0.0563567045 |
Litres per hour to Tablespoons per second (l/h to Tbs/s) | 0.01878556816667 |
Litres per hour to Cubic inches per second (l/h to in3/s) | 0.01695111815945 |
Litres per hour to Cubic inches per minute (l/h to in3/min) | 1.0170670895671 |
Litres per hour to Cubic inches per hour (l/h to in3/h) | 61.024025374023 |
Litres per hour to Fluid Ounces per second (l/h to fl-oz/s) | 0.009392784083333 |
Litres per hour to Fluid Ounces per minute (l/h to fl-oz/min) | 0.563567045 |
Litres per hour to Fluid Ounces per hour (l/h to fl-oz/h) | 33.8140227 |
Litres per hour to Cups per second (l/h to cup/s) | 0.001174098010417 |
Litres per hour to Pints per second (l/h to pnt/s) | 0.0005870490052083 |
Litres per hour to Pints per minute (l/h to pnt/min) | 0.0352229403125 |
Litres per hour to Pints per hour (l/h to pnt/h) | 2.11337641875 |
Litres per hour to Quarts per second (l/h to qt/s) | 0.0002935245026042 |
Litres per hour to Gallons per second (l/h to gal/s) | 0.00007338112565104 |
Litres per hour to Gallons per minute (l/h to gal/min) | 0.004402867539063 |
Litres per hour to Gallons per hour (l/h to gal/h) | 0.2641720523438 |
Litres per hour to Cubic feet per second (l/h to ft3/s) | 0.000009809634700287 |
Litres per hour to Cubic feet per minute (l/h to ft3/min) | 0.0005885780820172 |
Litres per hour to Cubic feet per hour (l/h to ft3/h) | 0.03531468492103 |
Litres per hour to Cubic yards per second (l/h to yd3/s) | 3.6331926968299e-7 |
Litres per hour to Cubic yards per minute (l/h to yd3/min) | 0.00002179915618098 |
Litres per hour to Cubic yards per hour (l/h to yd3/h) | 0.001307949370859 |