millimeters of mercury (mmHg) | Inches of mercury (inHg) |
---|---|
0 | 0 |
1 | 0.03936996069858 |
2 | 0.07873992139716 |
3 | 0.1181098820957 |
4 | 0.1574798427943 |
5 | 0.1968498034929 |
6 | 0.2362197641915 |
7 | 0.2755897248901 |
8 | 0.3149596855887 |
9 | 0.3543296462872 |
10 | 0.3936996069858 |
20 | 0.7873992139716 |
30 | 1.1810988209574 |
40 | 1.5747984279433 |
50 | 1.9684980349291 |
60 | 2.3621976419149 |
70 | 2.7558972489007 |
80 | 3.1495968558865 |
90 | 3.5432964628723 |
100 | 3.9369960698582 |
1000 | 39.369960698582 |
Converting between millimeters of mercury (mmHg) and inches of mercury (inHg) is a common task in fields like meteorology, aviation, and medicine. Here's how to convert between these two pressure units.
The conversion factor between millimeters of mercury and inches of mercury is based on a defined relationship:
Therefore, the conversion factors are:
To convert mmHg to inHg, multiply the value in mmHg by the conversion factor 0.0393701.
Formula:
Example: Convert 1 mmHg to inHg
So, 1 mmHg is equal to approximately 0.0393701 inHg.
To convert inHg to mmHg, multiply the value in inHg by the conversion factor 25.4.
Formula:
Example: Convert 1 inHg to mmHg
So, 1 inHg is equal to 25.4 mmHg.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Inches of mercury to other unit conversions.
Millimeters of mercury (mmHg) is a unit of pressure, often used in medicine (especially blood pressure) and meteorology. It represents the pressure exerted by a column of mercury one millimeter high at a standard temperature. Let's delve into its definition, history, and applications.
Millimeters of mercury (mmHg) is a manometric unit of pressure. Specifically, it's the pressure exerted at the base of a column of mercury exactly 1 millimeter high when the density of mercury is 13,595.1 kg/m³ and the local acceleration of gravity is exactly 9.80665 m/s². It's not an SI unit, but it is accepted for use with the SI.
While not an official SI unit (Pascal is the SI unit for pressure), mmHg remains widely used due to its historical significance and practical applications, especially in fields like medicine.
The unit originates from Evangelista Torricelli's experiments in the 17th century. Torricelli, an Italian physicist and mathematician, invented the mercury barometer in 1643. He filled a glass tube with mercury and inverted it into a dish of mercury. The mercury column would fall, leaving a vacuum at the top, and the height of the column was proportional to the atmospheric pressure. This led to the standardized measurement of pressure using the height of a mercury column. Read more about it in Britannica.
Pascal (Pa): The SI unit of pressure. 1 mmHg is approximately equal to 133.322 Pascals.
Atmosphere (atm): A standard unit of pressure. 1 atm is equal to 760 mmHg.
Torr: Named after Torricelli, 1 Torr is very close to 1 mmHg. For most practical purposes, they are considered equivalent.
Blood Pressure: In medicine, blood pressure is commonly measured in mmHg. For example, a blood pressure reading of 120/80 mmHg indicates a systolic pressure of 120 mmHg and a diastolic pressure of 80 mmHg. The first number represents the pressure in the arteries when the heart beats (systolic pressure) and the second number represents the pressure in the arteries between beats (diastolic pressure).
Atmospheric Pressure: Meteorologists often use mmHg to report atmospheric pressure. Standard atmospheric pressure at sea level is 760 mmHg. Changes in atmospheric pressure are often precursors to changes in weather.
Vacuum Gauges: Many vacuum gauges, particularly older or specialized instruments, display pressure in mmHg. Low pressures in vacuum systems, such as those used in scientific experiments or manufacturing processes, are often expressed in mmHg or fractions thereof (e.g., milliTorr, which is approximately 1/1000 of a mmHg).
Aircraft Altimeters: Aircraft altimeters use atmospheric pressure to determine altitude. While the actual scale on the altimeter might be in feet or meters, the underlying pressure measurement is often related to mmHg.
While mmHg is widely used, it's essential to be aware of its limitations:
The "inches of mercury" (inHg) is a unit of pressure commonly used in the United States. It's based on the height of a column of mercury that the given pressure will support. This unit is frequently used in aviation, meteorology, and vacuum applications.
Inches of mercury is a manometric unit of pressure. It represents the pressure exerted by a one-inch column of mercury at a standard temperature (usually 0°C or 32°F) under standard gravity.
The basic principle is that atmospheric pressure can support a certain height of a mercury column in a barometer. Higher atmospheric pressure corresponds to a higher mercury column, and vice versa. Therefore, the height of this column, measured in inches, serves as a direct indication of the pressure.
Here's how inches of mercury relates to other pressure units:
The concept of measuring pressure using a column of liquid is closely linked to Evangelista Torricelli, an Italian physicist and mathematician. In 1643, Torricelli invented the mercury barometer, demonstrating that atmospheric pressure could support a column of mercury. His experiments led to the understanding of vacuum and the quantification of atmospheric pressure. Britannica - Evangelista Torricelli has a good intro about him.
Aviation: Aircraft altimeters use inches of mercury to indicate altitude. Pilots set their altimeters to a local pressure reading (inHg) to ensure accurate altitude readings. Standard sea level pressure is 29.92 inHg.
Meteorology: Weather reports often include atmospheric pressure readings in inches of mercury. These readings are used to track weather patterns and predict changes in weather conditions. For example, a rising barometer (increasing inHg) often indicates improving weather, while a falling barometer suggests worsening weather.
Vacuum Systems: In various industrial and scientific applications, inches of mercury is used to measure vacuum levels. For example, vacuum pumps might be rated by the amount of vacuum they can create, expressed in inches of mercury. Higher vacuum levels (i.e., more negative readings) are crucial in processes like freeze-drying and semiconductor manufacturing. For example, common home vacuum cleaners operate in a range of 50 to 80 inHg.
Medical Equipment: Some medical devices, such as sphygmomanometers (blood pressure monitors), historically used mmHg (millimeters of mercury), a related unit. While digital devices are common now, the underlying principle remains tied to pressure measurement.
Standard Atmospheric Pressure: Standard atmospheric pressure at sea level is approximately 29.92 inches of mercury (inHg). This value is often used as a reference point for various measurements and calculations.
Altitude Dependence: Atmospheric pressure decreases with altitude. As you ascend, the weight of the air above you decreases, resulting in lower pressure readings in inches of mercury.
Temperature Effects: While "inches of mercury" typically refers to a standardized temperature, variations in temperature can slightly affect the density of mercury and, consequently, the pressure reading.
Convert 1 mmHg to other units | Result |
---|---|
millimeters of mercury to pascals (mmHg to Pa) | 133.322 |
millimeters of mercury to kilopascals (mmHg to kPa) | 0.133322 |
millimeters of mercury to megapascals (mmHg to MPa) | 0.000133322 |
millimeters of mercury to hectopascals (mmHg to hPa) | 1.33322 |
millimeters of mercury to millibar (mmHg to mbar) | 1.33322 |
millimeters of mercury to bar (mmHg to bar) | 0.00133322 |
millimeters of mercury to torr (mmHg to torr) | 0.9999972366149 |
millimeters of mercury to meters of water @ 4°C (mmHg to mH2O) | 0.01359506049466 |
millimeters of mercury to pounds per square inch (mmHg to psi) | 0.01933671367695 |
millimeters of mercury to kilopound per square inch (mmHg to ksi) | 0.00001933671367695 |
millimeters of mercury to Inches of mercury (mmHg to inHg) | 0.03936996069858 |