Cubic inches per second (in3/s) to Cups per second (cup/s) conversion

Cubic inches per second to Cups per second conversion table

Cubic inches per second (in3/s)Cups per second (cup/s)
00
10.06926375
20.1385275
30.20779125
40.277055
50.34631875
60.4155825
70.48484625
80.55411
90.62337375
100.6926375
201.385275
302.0779125
402.77055
503.4631875
604.155825
704.8484625
805.5411
906.2337375
1006.926375
100069.26375

How to convert cubic inches per second to cups per second?

Certainly! To convert cubic inches per second to cups per second, we need to know the conversion factor between these two units of volume.

1 Cup (US) is equivalent to approximately 14.4375 cubic inches. So, to convert from cubic inches per second to cups per second, we divide the number of cubic inches by 14.4375.

Conversion Formula:

Cups per second=Cubic inches per second14.4375\text{Cups per second} = \frac{\text{Cubic inches per second}}{14.4375}

Now, let's convert 1 cubic inch per second to cups per second:

1 Cubic inch per second=114.43750.069 Cups per second 1 \text{ Cubic inch per second} = \frac{1}{14.4375} \approx 0.069 \text{ Cups per second}

So, 1 cubic inch per second is approximately 0.069 cups per second.

Real-World Examples for Other Quantities of Cubic Inches per Second:

  1. 5 Cubic Inches per Second: 514.43750.346 Cups per second\frac{5}{14.4375} \approx 0.346 \text{ Cups per second} This could represent the amount of liquid being poured from a container at a rate of 5 cubic inches per second.

  2. 10 Cubic Inches per Second: 1014.43750.693 Cups per second\frac{10}{14.4375} \approx 0.693 \text{ Cups per second} This might be akin to the flow rate of a small pump or a fast garden hose setting.

  3. 50 Cubic Inches per Second: 5014.43753.460 Cups per second\frac{50}{14.4375} \approx 3.460 \text{ Cups per second} This could be indicative of a larger pump such as a sump pump used to move water out of a basement.

  4. 100 Cubic Inches per Second: 10014.43756.922 Cups per second\frac{100}{14.4375} \approx 6.922 \text{ Cups per second} This might represent an industrial pump or a fire hose in operation.

Remember, these conversions help you grasp different flow rates by converting them into more familiar terms like cups per second, which can aid in visualizing and understanding the quantities involved.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cups per second to other unit conversions.

What is Cubic Inches per Second?

Cubic inches per second (in$^3$/s) is a unit of flow rate that expresses the volume of a substance passing through a cross-sectional area per unit time. Specifically, it measures how many cubic inches of a substance flow past a point in one second.

Formation of Cubic Inches per Second

This unit is derived from the fundamental units of volume (cubic inches) and time (seconds). It's a volumetric flow rate, calculated as:

Flow Rate=VolumeTime\text{Flow Rate} = \frac{\text{Volume}}{\text{Time}}

In this case:

  • Volume is measured in cubic inches (in$^3$). 1 cubic inch is equal to 16.3871 cm316.3871 \text{ cm}^3.
  • Time is measured in seconds (s).

Therefore, 1 in$^3$/s means that one cubic inch of a substance flows past a specific point in one second.

Real-World Applications and Examples

Understanding the scale of cubic inches per second is easier with real-world examples:

  • Small Engine Displacement: The displacement of small engines, like those in lawnmowers or motorcycles, can be expressed in cubic inches. While not directly a flow rate, it represents the total volume displaced by the pistons during one engine cycle, influencing performance. A larger displacement generally means more power.

  • Hydraulic Systems: In hydraulic systems, such as those used in heavy machinery or braking systems, flow rates are crucial. The rate at which hydraulic fluid flows through valves and cylinders, often measured in gallons per minute (GPM), can be converted to cubic inches per second to ensure precise control and operation. One GPM equals 0.0631 in$^3$/s

  • Fuel Injectors: Fuel injectors in internal combustion engines control the flow of fuel into the cylinders. The flow rate of fuel injectors is critical for engine performance and emissions. While often measured in other units, these rates can be converted to cubic inches per second for comparison.

  • HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is often measured in cubic feet per minute (CFM). CFM can be converted to cubic inches per second to quantify the amount of air being circulated. One CFM equals 1.728 in$^3$/s

Interesting Facts and Related Concepts

  • Dimensional Analysis: When working with flow rates, dimensional analysis is crucial to ensure consistent units. Converting between different units of volume and time (e.g., gallons per minute to cubic inches per second) requires careful attention to conversion factors.

  • Fluid Dynamics: The study of fluid dynamics relies heavily on the concept of flow rate. Principles like the conservation of mass and Bernoulli's equation are used to analyze and predict fluid behavior in various systems. Bernoulli's principle is a statement about conservation of energy for fluids.

What is cups per second?

Cups per second is a unit of measure for volume flow rate, indicating the amount of volume that passes through a cross-sectional area per unit of time. It's a measure of how quickly something is flowing.

Understanding Cups per Second

Cups per second (cups/s) is a unit used to quantify the volume of a substance that passes through a specific point or area in one second. It's part of a broader family of volume flow rate units, which also includes liters per second, gallons per minute, and cubic meters per hour.

How is it Formed?

Cups per second is derived by dividing a volume measurement (in cups) by a time measurement (in seconds).

  • Volume: A cup is a unit of volume. In the US customary system, a cup is equal to 8 fluid ounces.
  • Time: A second is the base unit of time in the International System of Units (SI).

Therefore, 1 cup/s means that one cup of a substance flows past a certain point in one second.

Calculating Volume Flow Rate

The general formula for volume flow rate (QQ) is:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate.
  • VV is the volume of the substance.
  • tt is the time it takes for that volume to flow.

Conversions

  • 1 US cup = 236.588 milliliters (mL)
  • 1 cup/s = 0.236588 liters per second (L/s)

Real-World Examples and Applications

While cups per second might not be a standard industrial measurement, it can be useful for illustrating flow rates in relatable terms:

  • Pouring Beverages: Imagine a bartender quickly pouring a drink. They might pour approximately 1 cup of liquid in 1 second, equating to a flow rate of 1 cup/s.
  • Small-Scale Liquid Dispensing: A machine dispensing precise amounts of liquid, such as in a pharmaceutical or food production setting, could operate at a rate expressible in cups per second. For instance, filling small medicine cups or condiment portions.
  • Estimating Water Flow: If you are filling a container, you can use cups per second to measure how fast you are filling that container. For example, you can use it to calculate how long it takes for the water to drain from a sink.

Historical Context and Notable Figures

There isn't a specific law or famous figure directly associated with cups per second as a unit. However, the broader study of fluid dynamics has roots in the work of scientists and engineers like:

  • Archimedes: Known for his work on buoyancy and fluid displacement.
  • Daniel Bernoulli: Developed Bernoulli's principle, which relates fluid speed to pressure.
  • Osborne Reynolds: Famous for the Reynolds number, which helps predict flow patterns in fluids.

Practical Implications

Understanding volume flow rate is crucial in various fields:

  • Engineering: Designing pipelines, irrigation systems, and hydraulic systems.
  • Medicine: Measuring blood flow in arteries and veins.
  • Environmental Science: Assessing river discharge and pollution dispersion.

Complete Cubic inches per second conversion table

Enter # of Cubic inches per second
Convert 1 in3/s to other unitsResult
Cubic inches per second to Cubic Millimeters per second (in3/s to mm3/s)16386.98846677
Cubic inches per second to Cubic Centimeters per second (in3/s to cm3/s)16.38698846677
Cubic inches per second to Cubic Decimeters per second (in3/s to dm3/s)0.01638698846677
Cubic inches per second to Cubic Decimeters per minute (in3/s to dm3/min)0.9832193080062
Cubic inches per second to Cubic Decimeters per hour (in3/s to dm3/h)58.993158480372
Cubic inches per second to Cubic Decimeters per day (in3/s to dm3/d)1415.8358035289
Cubic inches per second to Cubic Decimeters per year (in3/s to dm3/a)517134.02723894
Cubic inches per second to Millilitres per second (in3/s to ml/s)16.38698846677
Cubic inches per second to Centilitres per second (in3/s to cl/s)1.638698846677
Cubic inches per second to Decilitres per second (in3/s to dl/s)0.1638698846677
Cubic inches per second to Litres per second (in3/s to l/s)0.01638698846677
Cubic inches per second to Litres per minute (in3/s to l/min)0.9832193080062
Cubic inches per second to Litres per hour (in3/s to l/h)58.993158480372
Cubic inches per second to Litres per day (in3/s to l/d)1415.8358035289
Cubic inches per second to Litres per year (in3/s to l/a)517134.02723894
Cubic inches per second to Kilolitres per second (in3/s to kl/s)0.00001638698846677
Cubic inches per second to Kilolitres per minute (in3/s to kl/min)0.0009832193080062
Cubic inches per second to Kilolitres per hour (in3/s to kl/h)0.05899315848037
Cubic inches per second to Cubic meters per second (in3/s to m3/s)0.00001638698846677
Cubic inches per second to Cubic meters per minute (in3/s to m3/min)0.0009832193080062
Cubic inches per second to Cubic meters per hour (in3/s to m3/h)0.05899315848037
Cubic inches per second to Cubic meters per day (in3/s to m3/d)1.4158358035289
Cubic inches per second to Cubic meters per year (in3/s to m3/a)517.13402723894
Cubic inches per second to Cubic kilometers per second (in3/s to km3/s)1.638698846677e-14
Cubic inches per second to Teaspoons per second (in3/s to tsp/s)3.32466
Cubic inches per second to Tablespoons per second (in3/s to Tbs/s)1.10822
Cubic inches per second to Cubic inches per minute (in3/s to in3/min)60
Cubic inches per second to Cubic inches per hour (in3/s to in3/h)3600
Cubic inches per second to Fluid Ounces per second (in3/s to fl-oz/s)0.55411
Cubic inches per second to Fluid Ounces per minute (in3/s to fl-oz/min)33.2466
Cubic inches per second to Fluid Ounces per hour (in3/s to fl-oz/h)1994.796
Cubic inches per second to Cups per second (in3/s to cup/s)0.06926375
Cubic inches per second to Pints per second (in3/s to pnt/s)0.034631875
Cubic inches per second to Pints per minute (in3/s to pnt/min)2.0779125
Cubic inches per second to Pints per hour (in3/s to pnt/h)124.67475
Cubic inches per second to Quarts per second (in3/s to qt/s)0.0173159375
Cubic inches per second to Gallons per second (in3/s to gal/s)0.004328984375
Cubic inches per second to Gallons per minute (in3/s to gal/min)0.2597390625
Cubic inches per second to Gallons per hour (in3/s to gal/h)15.58434375
Cubic inches per second to Cubic feet per second (in3/s to ft3/s)0.0005787013345086
Cubic inches per second to Cubic feet per minute (in3/s to ft3/min)0.03472208007052
Cubic inches per second to Cubic feet per hour (in3/s to ft3/h)2.083324804231
Cubic inches per second to Cubic yards per second (in3/s to yd3/s)0.00002143335125538
Cubic inches per second to Cubic yards per minute (in3/s to yd3/min)0.001286001075323
Cubic inches per second to Cubic yards per hour (in3/s to yd3/h)0.07716006451937

Volume flow rate conversions