Cubic inches per second (in3/s) to Pints per second (pnt/s) conversion

Cubic inches per second to Pints per second conversion table

Cubic inches per second (in3/s)Pints per second (pnt/s)
00
10.034631875
20.06926375
30.103895625
40.1385275
50.173159375
60.20779125
70.242423125
80.277055
90.311686875
100.34631875
200.6926375
301.03895625
401.385275
501.73159375
602.0779125
702.42423125
802.77055
903.11686875
1003.4631875
100034.631875

How to convert cubic inches per second to pints per second?

To convert cubic inches per second to pints per second, it's essential to understand the relationship between these units of volume.

  1. There are 231 cubic inches in a US gallon.
  2. There are 8 pints in a US gallon.

Let's break down the conversion:

  1. First, find the number of cubic inches in a pint: Each gallon is 231 cubic inches, and each gallon contains 8 pints. Therefore, 1 pint = 231 cubic inches / 8 = 28.875 cubic inches per pint.

  2. To convert cubic inches per second to pints per second, divide the volume flow rate in cubic inches by the number of cubic inches per pint: Pints per second=Cubic inches per second28.875 \text{Pints per second} = \frac{\text{Cubic inches per second}}{28.875}

For example:

  1. If you have 1 cubic inch per second: Pints per second=128.8750.0346 pints per second \text{Pints per second} = \frac{1}{28.875} \approx 0.0346 \text{ pints per second}

Real-World Examples:

  1. A garden hose (15 cubic inches per second): Pints per second=1528.8750.52 pints per second \text{Pints per second} = \frac{15}{28.875} \approx 0.52 \text{ pints per second}

  2. A bathtub faucet (100 cubic inches per second): Pints per second=10028.8753.46 pints per second \text{Pints per second} = \frac{100}{28.875} \approx 3.46 \text{ pints per second}

  3. An industrial pump (500 cubic inches per second): Pints per second=50028.87517.32 pints per second \text{Pints per second} = \frac{500}{28.875} \approx 17.32 \text{ pints per second}

These conversions offer insights into how different flow rates can be visualized and understood in more everyday terms like pints per second.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Pints per second to other unit conversions.

What is Cubic Inches per Second?

Cubic inches per second (in$^3$/s) is a unit of flow rate that expresses the volume of a substance passing through a cross-sectional area per unit time. Specifically, it measures how many cubic inches of a substance flow past a point in one second.

Formation of Cubic Inches per Second

This unit is derived from the fundamental units of volume (cubic inches) and time (seconds). It's a volumetric flow rate, calculated as:

Flow Rate=VolumeTime\text{Flow Rate} = \frac{\text{Volume}}{\text{Time}}

In this case:

  • Volume is measured in cubic inches (in$^3$). 1 cubic inch is equal to 16.3871 cm316.3871 \text{ cm}^3.
  • Time is measured in seconds (s).

Therefore, 1 in$^3$/s means that one cubic inch of a substance flows past a specific point in one second.

Real-World Applications and Examples

Understanding the scale of cubic inches per second is easier with real-world examples:

  • Small Engine Displacement: The displacement of small engines, like those in lawnmowers or motorcycles, can be expressed in cubic inches. While not directly a flow rate, it represents the total volume displaced by the pistons during one engine cycle, influencing performance. A larger displacement generally means more power.

  • Hydraulic Systems: In hydraulic systems, such as those used in heavy machinery or braking systems, flow rates are crucial. The rate at which hydraulic fluid flows through valves and cylinders, often measured in gallons per minute (GPM), can be converted to cubic inches per second to ensure precise control and operation. One GPM equals 0.0631 in$^3$/s

  • Fuel Injectors: Fuel injectors in internal combustion engines control the flow of fuel into the cylinders. The flow rate of fuel injectors is critical for engine performance and emissions. While often measured in other units, these rates can be converted to cubic inches per second for comparison.

  • HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is often measured in cubic feet per minute (CFM). CFM can be converted to cubic inches per second to quantify the amount of air being circulated. One CFM equals 1.728 in$^3$/s

Interesting Facts and Related Concepts

  • Dimensional Analysis: When working with flow rates, dimensional analysis is crucial to ensure consistent units. Converting between different units of volume and time (e.g., gallons per minute to cubic inches per second) requires careful attention to conversion factors.

  • Fluid Dynamics: The study of fluid dynamics relies heavily on the concept of flow rate. Principles like the conservation of mass and Bernoulli's equation are used to analyze and predict fluid behavior in various systems. Bernoulli's principle is a statement about conservation of energy for fluids.

What is pints per second?

Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.

Understanding Pints per Second

Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.

Formation of the Unit

The unit is derived from two base units:

  • Pint (pint): A unit of volume. In the US system, there are both liquid and dry pints. Here, we refer to liquid pints.
  • Second (s): A unit of time.

Combining these, we get pints per second (pint/s), representing volume per unit time.

Formula and Calculation

Flow rate (QQ) is generally calculated as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the flow rate (in pints per second)
  • VV is the volume (in pints)
  • tt is the time (in seconds)

Real-World Examples & Conversions

While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:

  • Dosing Pumps: Small dosing pumps used in chemical processing or water treatment might operate at flow rates measurable in pints per second.
  • Small Streams/Waterfalls: The flow rate of a small stream or the outflow of a small waterfall could be estimated in pints per second.

Conversions to other common units:

  • 1 pint/s = 0.125 gallons/s
  • 1 pint/s = 7.48 gallons/minute
  • 1 pint/s = 0.473 liters/s
  • 1 pint/s = 473.176 milliliters/s

Related Concepts and Applications

While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:

  • Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.

  • Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density ρ\rho, the volumetric flow rate QQ is constant. Mathematically, this can be expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where AA is the cross-sectional area of the flow and vv is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in m3/sm^3/s or pint/spint/s.

  • Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.

    Q=πr4ΔP8ηLQ = \frac{\pi r^4 \Delta P}{8 \eta L}

    Where:

    • QQ is the volumetric flow rate (e.g., in m3/sm^3/s).
    • rr is the radius of the pipe.
    • ΔP\Delta P is the pressure difference between the ends of the pipe.
    • η\eta is the dynamic viscosity of the fluid.
    • LL is the length of the pipe.

Complete Cubic inches per second conversion table

Enter # of Cubic inches per second
Convert 1 in3/s to other unitsResult
Cubic inches per second to Cubic Millimeters per second (in3/s to mm3/s)16386.98846677
Cubic inches per second to Cubic Centimeters per second (in3/s to cm3/s)16.38698846677
Cubic inches per second to Cubic Decimeters per second (in3/s to dm3/s)0.01638698846677
Cubic inches per second to Cubic Decimeters per minute (in3/s to dm3/min)0.9832193080062
Cubic inches per second to Cubic Decimeters per hour (in3/s to dm3/h)58.993158480372
Cubic inches per second to Cubic Decimeters per day (in3/s to dm3/d)1415.8358035289
Cubic inches per second to Cubic Decimeters per year (in3/s to dm3/a)517134.02723894
Cubic inches per second to Millilitres per second (in3/s to ml/s)16.38698846677
Cubic inches per second to Centilitres per second (in3/s to cl/s)1.638698846677
Cubic inches per second to Decilitres per second (in3/s to dl/s)0.1638698846677
Cubic inches per second to Litres per second (in3/s to l/s)0.01638698846677
Cubic inches per second to Litres per minute (in3/s to l/min)0.9832193080062
Cubic inches per second to Litres per hour (in3/s to l/h)58.993158480372
Cubic inches per second to Litres per day (in3/s to l/d)1415.8358035289
Cubic inches per second to Litres per year (in3/s to l/a)517134.02723894
Cubic inches per second to Kilolitres per second (in3/s to kl/s)0.00001638698846677
Cubic inches per second to Kilolitres per minute (in3/s to kl/min)0.0009832193080062
Cubic inches per second to Kilolitres per hour (in3/s to kl/h)0.05899315848037
Cubic inches per second to Cubic meters per second (in3/s to m3/s)0.00001638698846677
Cubic inches per second to Cubic meters per minute (in3/s to m3/min)0.0009832193080062
Cubic inches per second to Cubic meters per hour (in3/s to m3/h)0.05899315848037
Cubic inches per second to Cubic meters per day (in3/s to m3/d)1.4158358035289
Cubic inches per second to Cubic meters per year (in3/s to m3/a)517.13402723894
Cubic inches per second to Cubic kilometers per second (in3/s to km3/s)1.638698846677e-14
Cubic inches per second to Teaspoons per second (in3/s to tsp/s)3.32466
Cubic inches per second to Tablespoons per second (in3/s to Tbs/s)1.10822
Cubic inches per second to Cubic inches per minute (in3/s to in3/min)60
Cubic inches per second to Cubic inches per hour (in3/s to in3/h)3600
Cubic inches per second to Fluid Ounces per second (in3/s to fl-oz/s)0.55411
Cubic inches per second to Fluid Ounces per minute (in3/s to fl-oz/min)33.2466
Cubic inches per second to Fluid Ounces per hour (in3/s to fl-oz/h)1994.796
Cubic inches per second to Cups per second (in3/s to cup/s)0.06926375
Cubic inches per second to Pints per second (in3/s to pnt/s)0.034631875
Cubic inches per second to Pints per minute (in3/s to pnt/min)2.0779125
Cubic inches per second to Pints per hour (in3/s to pnt/h)124.67475
Cubic inches per second to Quarts per second (in3/s to qt/s)0.0173159375
Cubic inches per second to Gallons per second (in3/s to gal/s)0.004328984375
Cubic inches per second to Gallons per minute (in3/s to gal/min)0.2597390625
Cubic inches per second to Gallons per hour (in3/s to gal/h)15.58434375
Cubic inches per second to Cubic feet per second (in3/s to ft3/s)0.0005787013345086
Cubic inches per second to Cubic feet per minute (in3/s to ft3/min)0.03472208007052
Cubic inches per second to Cubic feet per hour (in3/s to ft3/h)2.083324804231
Cubic inches per second to Cubic yards per second (in3/s to yd3/s)0.00002143335125538
Cubic inches per second to Cubic yards per minute (in3/s to yd3/min)0.001286001075323
Cubic inches per second to Cubic yards per hour (in3/s to yd3/h)0.07716006451937

Volume flow rate conversions