Litres per year (l/a) | Cubic feet per second (ft3/s) |
---|---|
0 | 0 |
1 | 1.1190548369025e-9 |
2 | 2.238109673805e-9 |
3 | 3.3571645107075e-9 |
4 | 4.47621934761e-9 |
5 | 5.5952741845125e-9 |
6 | 6.714329021415e-9 |
7 | 7.8333838583175e-9 |
8 | 8.95243869522e-9 |
9 | 1.0071493532123e-8 |
10 | 1.1190548369025e-8 |
20 | 2.238109673805e-8 |
30 | 3.3571645107075e-8 |
40 | 4.47621934761e-8 |
50 | 5.5952741845125e-8 |
60 | 6.714329021415e-8 |
70 | 7.8333838583175e-8 |
80 | 8.95243869522e-8 |
90 | 1.0071493532123e-7 |
100 | 1.1190548369025e-7 |
1000 | 0.000001119054836903 |
1 Litres per year (l/a) is equal to 1.1190548369025e-9 Cubic feet per second (ft3/s).
1 l/a = 1.1190548369025e-9 ft3/s
or
1 ft3/s = 893611257.48579 l/a
Litres per year (L/year) is a unit used to express volume flow rate, indicating the volume of liquid (in litres) that passes through a specific point or is consumed over a period of one year. While not as commonly used as other flow rate units like litres per minute or cubic meters per second, it's useful for quantifying long-term consumption or production rates.
Litres per year are particularly useful in contexts where long-term accumulation or consumption rates are important. Here are a few examples:
Since 1 millimetre of rainfall over 1 square meter is equal to 1 litre.
Litres per year can be converted to other common flow rate units. Here are a couple of examples:
Litres per day (L/day): Divide litres per year by 365.25.
Cubic meters per year (/year): Divide litres per year by 1000.
While there isn't a specific "law" or famous person directly associated with litres per year, the concept is fundamental in environmental science and resource management. Tracking annual consumption and production rates helps in:
Cubic feet per second (CFS) is a unit of measurement that expresses the volume of a substance (typically fluid) flowing per unit of time. Specifically, one CFS is equivalent to a volume of one cubic foot passing a point in one second. It's a rate, not a total volume.
CFS is derived from the fundamental units of volume (cubic feet, ) and time (seconds, ). The volume is usually calculated based on area and velocity of the fluid flow. It essentially quantifies how quickly a volume is moving.
The volume flow rate () can be calculated using the following formula:
Where:
Alternatively, if you know the volume () that passes a point over a certain time ():
Where:
While there isn't a specific "law" named after someone directly tied to CFS, the principles behind its use are rooted in fluid dynamics, a field heavily influenced by:
For a more in-depth understanding of the relationship between pressure and velocity, refer to Bernoulli's Principle from NASA.
River Flows: The flow rate of rivers and streams is often measured in CFS. For example, a small stream might have a flow of 5 CFS during normal conditions, while a large river during a flood could reach thousands of CFS. The USGS WaterWatch website provides real-time streamflow data across the United States, often reported in CFS.
Water Supply: Municipal water systems need to deliver water at a specific rate to meet demand. The flow rate in water pipes is calculated and monitored in CFS or related units (like gallons per minute, which can be converted to CFS) to ensure adequate supply.
Industrial Processes: Many industrial processes rely on controlling the flow rate of liquids and gases. For example, a chemical plant might need to pump reactants into a reactor at a precise flow rate measured in CFS.
HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is sometimes specified in cubic feet per minute (CFM), which can be easily converted to CFS by dividing by 60 (since there are 60 seconds in a minute). This helps ensure proper ventilation and temperature control.
Convert 1 l/a to other units | Result |
---|---|
Litres per year to Cubic Millimeters per second (l/a to mm3/s) | 0.03168808781403 |
Litres per year to Cubic Centimeters per second (l/a to cm3/s) | 0.00003168808781403 |
Litres per year to Cubic Decimeters per second (l/a to dm3/s) | 3.1688087814029e-8 |
Litres per year to Cubic Decimeters per minute (l/a to dm3/min) | 0.000001901285268842 |
Litres per year to Cubic Decimeters per hour (l/a to dm3/h) | 0.0001140771161305 |
Litres per year to Cubic Decimeters per day (l/a to dm3/d) | 0.002737850787132 |
Litres per year to Cubic Decimeters per year (l/a to dm3/a) | 1 |
Litres per year to Millilitres per second (l/a to ml/s) | 0.00003168808781403 |
Litres per year to Centilitres per second (l/a to cl/s) | 0.000003168808781403 |
Litres per year to Decilitres per second (l/a to dl/s) | 3.1688087814029e-7 |
Litres per year to Litres per second (l/a to l/s) | 3.1688087814029e-8 |
Litres per year to Litres per minute (l/a to l/min) | 0.000001901285268842 |
Litres per year to Litres per hour (l/a to l/h) | 0.0001140771161305 |
Litres per year to Litres per day (l/a to l/d) | 0.002737850787132 |
Litres per year to Kilolitres per second (l/a to kl/s) | 3.1688087814029e-11 |
Litres per year to Kilolitres per minute (l/a to kl/min) | 1.9012852688417e-9 |
Litres per year to Kilolitres per hour (l/a to kl/h) | 1.140771161305e-7 |
Litres per year to Cubic meters per second (l/a to m3/s) | 3.1688087814029e-11 |
Litres per year to Cubic meters per minute (l/a to m3/min) | 1.9012852688417e-9 |
Litres per year to Cubic meters per hour (l/a to m3/h) | 1.140771161305e-7 |
Litres per year to Cubic meters per day (l/a to m3/d) | 0.000002737850787132 |
Litres per year to Cubic meters per year (l/a to m3/a) | 0.001 |
Litres per year to Cubic kilometers per second (l/a to km3/s) | 3.1688087814029e-20 |
Litres per year to Teaspoons per second (l/a to tsp/s) | 0.000006429010323979 |
Litres per year to Tablespoons per second (l/a to Tbs/s) | 0.000002143003441326 |
Litres per year to Cubic inches per second (l/a to in3/s) | 0.000001933734674818 |
Litres per year to Cubic inches per minute (l/a to in3/min) | 0.0001160240804891 |
Litres per year to Cubic inches per hour (l/a to in3/h) | 0.006961444829343 |
Litres per year to Fluid Ounces per second (l/a to fl-oz/s) | 0.000001071501720663 |
Litres per year to Fluid Ounces per minute (l/a to fl-oz/min) | 0.00006429010323979 |
Litres per year to Fluid Ounces per hour (l/a to fl-oz/h) | 0.003857406194387 |
Litres per year to Cups per second (l/a to cup/s) | 1.339377150829e-7 |
Litres per year to Pints per second (l/a to pnt/s) | 6.6968857541448e-8 |
Litres per year to Pints per minute (l/a to pnt/min) | 0.000004018131452487 |
Litres per year to Pints per hour (l/a to pnt/h) | 0.0002410878871492 |
Litres per year to Quarts per second (l/a to qt/s) | 3.3484428770724e-8 |
Litres per year to Gallons per second (l/a to gal/s) | 8.371107192681e-9 |
Litres per year to Gallons per minute (l/a to gal/min) | 5.0226643156086e-7 |
Litres per year to Gallons per hour (l/a to gal/h) | 0.00003013598589365 |
Litres per year to Cubic feet per second (l/a to ft3/s) | 1.1190548369025e-9 |
Litres per year to Cubic feet per minute (l/a to ft3/min) | 6.714329021415e-8 |
Litres per year to Cubic feet per hour (l/a to ft3/h) | 0.000004028597412849 |
Litres per year to Cubic yards per second (l/a to yd3/s) | 4.1446414520076e-11 |
Litres per year to Cubic yards per minute (l/a to yd3/min) | 2.4867848712046e-9 |
Litres per year to Cubic yards per hour (l/a to yd3/h) | 1.4920709227227e-7 |