Litres per year (l/a) to Cubic inches per second (in3/s) conversion

Litres per year to Cubic inches per second conversion table

Litres per year (l/a)Cubic inches per second (in3/s)
00
10.000001933734674818
20.000003867469349635
30.000005801204024453
40.00000773493869927
50.000009668673374088
60.00001160240804891
70.00001353614272372
80.00001546987739854
90.00001740361207336
100.00001933734674818
200.00003867469349635
300.00005801204024453
400.0000773493869927
500.00009668673374088
600.0001160240804891
700.0001353614272372
800.0001546987739854
900.0001740361207336
1000.0001933734674818
10000.001933734674818

How to convert Litres per year to Cubic inches per second

1 Litres per year (l/a) is equal to 0.000001933734674818 Cubic inches per second (in3/s).

1 l/a = 0.000001933734674818 in3/s
or
1 in3/s = 517134.02723894 l/a

What is Litres per year?

Litres per year (L/year) is a unit used to express volume flow rate, indicating the volume of liquid (in litres) that passes through a specific point or is consumed over a period of one year. While not as commonly used as other flow rate units like litres per minute or cubic meters per second, it's useful for quantifying long-term consumption or production rates.

Understanding Litres per Year

  • Definition: Litres per year represent the total volume of liquid that flows or is used within a single year.
  • Formation: It's derived by measuring the volume in litres and the time period in years. It can be calculated from smaller time intervals by scaling up. For example, if you know the daily consumption in litres, multiplying it by 365 (or 365.25 for accounting for leap years) gives the annual consumption in litres per year.

Litres per year=Litres per day×365.25\text{Litres per year} = \text{Litres per day} \times 365.25

Practical Applications & Examples

Litres per year are particularly useful in contexts where long-term accumulation or consumption rates are important. Here are a few examples:

  • Water Consumption: Household water usage is often tracked on an annual basis in litres per year to assess water footprint and manage resources effectively. For example, the average household might use 200,000 litres of water per year.
  • Rainfall Measurement: In hydrology, the annual rainfall in a region can be expressed as litres per square meter per year, providing insights into water availability. The formula to convert annual rainfall in millimetres to litres per square meter is:

Litres/m2/year=Millimetres/year\text{Litres/m}^2\text{/year} = \text{Millimetres/year}

Since 1 millimetre of rainfall over 1 square meter is equal to 1 litre.
  • Fuel Consumption: Large industrial facilities or power plants might track fuel consumption in litres per year. For example, a power plant might use 100 million litres of fuel oil per year.
  • Beverage Production: Breweries or beverage companies might measure their production output in litres per year to monitor overall production capacity and sales. A large brewery might produce 500 million litres of beer per year.
  • Irrigation: Agricultural operations use litres per year to keep track of how much water is being used for irrigation purposes.

Conversion to Other Units

Litres per year can be converted to other common flow rate units. Here are a couple of examples:

  • Litres per day (L/day): Divide litres per year by 365.25.

    L/day=L/year365.25\text{L/day} = \frac{\text{L/year}}{365.25}

  • Cubic meters per year (m3m^3/year): Divide litres per year by 1000.

    m3/year=L/year1000{m^3}\text{/year} = \frac{\text{L/year}}{1000}

Interesting Facts

While there isn't a specific "law" or famous person directly associated with litres per year, the concept is fundamental in environmental science and resource management. Tracking annual consumption and production rates helps in:

  • Sustainability: Monitoring resource usage and identifying areas for improvement.
  • Environmental Impact Assessments: Evaluating the long-term effects of industrial activities.

What is Cubic Inches per Second?

Cubic inches per second (in$^3$/s) is a unit of flow rate that expresses the volume of a substance passing through a cross-sectional area per unit time. Specifically, it measures how many cubic inches of a substance flow past a point in one second.

Formation of Cubic Inches per Second

This unit is derived from the fundamental units of volume (cubic inches) and time (seconds). It's a volumetric flow rate, calculated as:

Flow Rate=VolumeTime\text{Flow Rate} = \frac{\text{Volume}}{\text{Time}}

In this case:

  • Volume is measured in cubic inches (in$^3$). 1 cubic inch is equal to 16.3871 cm316.3871 \text{ cm}^3.
  • Time is measured in seconds (s).

Therefore, 1 in$^3$/s means that one cubic inch of a substance flows past a specific point in one second.

Real-World Applications and Examples

Understanding the scale of cubic inches per second is easier with real-world examples:

  • Small Engine Displacement: The displacement of small engines, like those in lawnmowers or motorcycles, can be expressed in cubic inches. While not directly a flow rate, it represents the total volume displaced by the pistons during one engine cycle, influencing performance. A larger displacement generally means more power.

  • Hydraulic Systems: In hydraulic systems, such as those used in heavy machinery or braking systems, flow rates are crucial. The rate at which hydraulic fluid flows through valves and cylinders, often measured in gallons per minute (GPM), can be converted to cubic inches per second to ensure precise control and operation. One GPM equals 0.0631 in$^3$/s

  • Fuel Injectors: Fuel injectors in internal combustion engines control the flow of fuel into the cylinders. The flow rate of fuel injectors is critical for engine performance and emissions. While often measured in other units, these rates can be converted to cubic inches per second for comparison.

  • HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is often measured in cubic feet per minute (CFM). CFM can be converted to cubic inches per second to quantify the amount of air being circulated. One CFM equals 1.728 in$^3$/s

Interesting Facts and Related Concepts

  • Dimensional Analysis: When working with flow rates, dimensional analysis is crucial to ensure consistent units. Converting between different units of volume and time (e.g., gallons per minute to cubic inches per second) requires careful attention to conversion factors.

  • Fluid Dynamics: The study of fluid dynamics relies heavily on the concept of flow rate. Principles like the conservation of mass and Bernoulli's equation are used to analyze and predict fluid behavior in various systems. Bernoulli's principle is a statement about conservation of energy for fluids.

Complete Litres per year conversion table

Enter # of Litres per year
Convert 1 l/a to other unitsResult
Litres per year to Cubic Millimeters per second (l/a to mm3/s)0.03168808781403
Litres per year to Cubic Centimeters per second (l/a to cm3/s)0.00003168808781403
Litres per year to Cubic Decimeters per second (l/a to dm3/s)3.1688087814029e-8
Litres per year to Cubic Decimeters per minute (l/a to dm3/min)0.000001901285268842
Litres per year to Cubic Decimeters per hour (l/a to dm3/h)0.0001140771161305
Litres per year to Cubic Decimeters per day (l/a to dm3/d)0.002737850787132
Litres per year to Cubic Decimeters per year (l/a to dm3/a)1
Litres per year to Millilitres per second (l/a to ml/s)0.00003168808781403
Litres per year to Centilitres per second (l/a to cl/s)0.000003168808781403
Litres per year to Decilitres per second (l/a to dl/s)3.1688087814029e-7
Litres per year to Litres per second (l/a to l/s)3.1688087814029e-8
Litres per year to Litres per minute (l/a to l/min)0.000001901285268842
Litres per year to Litres per hour (l/a to l/h)0.0001140771161305
Litres per year to Litres per day (l/a to l/d)0.002737850787132
Litres per year to Kilolitres per second (l/a to kl/s)3.1688087814029e-11
Litres per year to Kilolitres per minute (l/a to kl/min)1.9012852688417e-9
Litres per year to Kilolitres per hour (l/a to kl/h)1.140771161305e-7
Litres per year to Cubic meters per second (l/a to m3/s)3.1688087814029e-11
Litres per year to Cubic meters per minute (l/a to m3/min)1.9012852688417e-9
Litres per year to Cubic meters per hour (l/a to m3/h)1.140771161305e-7
Litres per year to Cubic meters per day (l/a to m3/d)0.000002737850787132
Litres per year to Cubic meters per year (l/a to m3/a)0.001
Litres per year to Cubic kilometers per second (l/a to km3/s)3.1688087814029e-20
Litres per year to Teaspoons per second (l/a to tsp/s)0.000006429010323979
Litres per year to Tablespoons per second (l/a to Tbs/s)0.000002143003441326
Litres per year to Cubic inches per second (l/a to in3/s)0.000001933734674818
Litres per year to Cubic inches per minute (l/a to in3/min)0.0001160240804891
Litres per year to Cubic inches per hour (l/a to in3/h)0.006961444829343
Litres per year to Fluid Ounces per second (l/a to fl-oz/s)0.000001071501720663
Litres per year to Fluid Ounces per minute (l/a to fl-oz/min)0.00006429010323979
Litres per year to Fluid Ounces per hour (l/a to fl-oz/h)0.003857406194387
Litres per year to Cups per second (l/a to cup/s)1.339377150829e-7
Litres per year to Pints per second (l/a to pnt/s)6.6968857541448e-8
Litres per year to Pints per minute (l/a to pnt/min)0.000004018131452487
Litres per year to Pints per hour (l/a to pnt/h)0.0002410878871492
Litres per year to Quarts per second (l/a to qt/s)3.3484428770724e-8
Litres per year to Gallons per second (l/a to gal/s)8.371107192681e-9
Litres per year to Gallons per minute (l/a to gal/min)5.0226643156086e-7
Litres per year to Gallons per hour (l/a to gal/h)0.00003013598589365
Litres per year to Cubic feet per second (l/a to ft3/s)1.1190548369025e-9
Litres per year to Cubic feet per minute (l/a to ft3/min)6.714329021415e-8
Litres per year to Cubic feet per hour (l/a to ft3/h)0.000004028597412849
Litres per year to Cubic yards per second (l/a to yd3/s)4.1446414520076e-11
Litres per year to Cubic yards per minute (l/a to yd3/min)2.4867848712046e-9
Litres per year to Cubic yards per hour (l/a to yd3/h)1.4920709227227e-7

Volume flow rate conversions