Cubic meters per second (m3/s) to Centilitres per second (cl/s) conversion

Cubic meters per second to Centilitres per second conversion table

Cubic meters per second (m3/s)Centilitres per second (cl/s)
00
1100000
2200000
3300000
4400000
5500000
6600000
7700000
8800000
9900000
101000000
202000000
303000000
404000000
505000000
606000000
707000000
808000000
909000000
10010000000
1000100000000

How to convert cubic meters per second to centilitres per second?

To convert cubic meters per second (m³/s) to centiliters per second (cl/s), you need to use the following conversion factors:

1 cubic meter (m³) = 1,000 liters (L) 1 liter (L) = 100 centiliters (cl)

So,

1 cubic meter (m³) = 1,000 liters (L) × 100 centiliters (cl) per liter (L) = 100,000 centiliters (cl)

Therefore, 1 cubic meter per second (m³/s) = 100,000 centiliters per second (cl/s).

So, 1 m³/s is equivalent to 100,000 cl/s.

Real-World Examples for Other Quantities of Cubic Meters per Second:

  1. River Flow:

    • Small streams might flow at around 0.1 m³/s.
    • A large river like the Amazon River can have an average discharge rate of around 209,000 m³/s.
  2. Fire Hoses:

    • A standard fire hose can discharge water at around 0.002 m³/s to 0.016 m³/s.
  3. Industrial Uses:

    • Large industrial pumps might handle fluids at around 1 m³/s to 10 m³/s depending on the application.
  4. Water Supply Systems:

    • A large city water supply system might deliver around 50 m³/s to 100 m³/s.
  5. Dams:

    • The discharge from a large dam can vary significantly; for example, the Itaipú Dam between Brazil and Paraguay may discharge as much as 120,000 m³/s through its spillways during peak flood periods.
  6. Cooling Systems of Power Plants:

    • Cooling systems for power plants can have flow rates on the order of tens of cubic meters per second. For instance, the cooling flow rate of a large nuclear power plant could be around 50 m³/s.

Conversion Practice:

Let's say you have a flow rate of 0.5 m³/s, and you want to convert it to centiliters per second.

0.5 m³/s × 100,000 cl/m³ = 50,000 cl/s

So, a flow rate of 0.5 m³/s is equivalent to 50,000 cl/s.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Centilitres per second to other unit conversions.

What is cubic meters per second?

What is Cubic meters per second?

Cubic meters per second (m3/sm^3/s) is the SI unit for volume flow rate, representing the volume of fluid passing a given point per unit of time. It's a measure of how quickly a volume of fluid is moving.

Understanding Cubic Meters per Second

Definition and Formation

One cubic meter per second is equivalent to a volume of one cubic meter flowing past a point in one second. It is derived from the base SI units of length (meter) and time (second).

Formula and Calculation

The volume flow rate (QQ) can be defined mathematically as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate in m3/sm^3/s
  • VV is the volume in m3m^3
  • tt is the time in seconds

Alternatively, if you know the cross-sectional area (AA) of the flow and the average velocity (vv) of the fluid, you can calculate the volume flow rate as:

Q=AvQ = A \cdot v

Where:

  • AA is the cross-sectional area in m2m^2
  • vv is the average velocity in m/sm/s

Relevance and Applications

Relationship with Mass Flow Rate

Volume flow rate is closely related to mass flow rate (m˙\dot{m}), which represents the mass of fluid passing a point per unit of time. The relationship between them is:

m˙=ρQ\dot{m} = \rho \cdot Q

Where:

  • m˙\dot{m} is the mass flow rate in kg/skg/s
  • ρ\rho is the density of the fluid in kg/m3kg/m^3
  • QQ is the volume flow rate in m3/sm^3/s

Real-World Examples

  • Rivers and Streams: Measuring the flow rate of rivers helps hydrologists manage water resources and predict floods. The Amazon River, for example, has an average discharge of about 209,000 m3/sm^3/s.
  • Industrial Processes: Chemical plants and refineries use flow meters to control the rate at which liquids and gases are transferred between tanks and reactors. For instance, controlling the flow rate of reactants in a chemical reactor is crucial for achieving the desired product yield.
  • HVAC Systems: Heating, ventilation, and air conditioning systems use fans and ducts to circulate air. The flow rate of air through these systems is measured in m3/sm^3/s to ensure proper ventilation and temperature control.
  • Water Supply: Municipal water supply systems use pumps to deliver water to homes and businesses. The flow rate of water through these systems is measured in m3/sm^3/s to ensure adequate water pressure and availability.
  • Hydropower: Hydroelectric power plants use the flow of water through turbines to generate electricity. The volume flow rate of water is a key factor in determining the power output of the plant. The Three Gorges Dam for example, diverts over 45,000 m3/sm^3/s during peak flow.

Interesting Facts and Historical Context

While no specific law or famous person is directly linked to the unit itself, the concept of fluid dynamics, which uses volume flow rate extensively, is deeply rooted in the work of scientists and engineers like:

  • Daniel Bernoulli: Known for Bernoulli's principle, which relates the pressure, velocity, and elevation of a fluid in a stream.
  • Osborne Reynolds: Famous for the Reynolds number, a dimensionless quantity used to predict the flow regime (laminar or turbulent) in a fluid.

These concepts form the foundation for understanding and applying volume flow rate in various fields.

What is centilitres per second?

Centilitres per second (cL/s) is a unit used to measure volume flow rate, indicating the volume of fluid that passes a given point per unit of time. It's a relatively small unit, often used when dealing with precise or low-volume flows.

Understanding Centilitres per Second

Centilitres per second expresses how many centilitres (cL) of a substance move past a specific location in one second. Since 1 litre is equal to 100 centilitres, and a litre is a unit of volume, centilitres per second is derived from volume divided by time.

  • 1 litre (L) = 100 centilitres (cL)
  • 1 cL = 0.01 L

Therefore, 1 cL/s is equivalent to 0.01 litres per second.

Calculation of Volume Flow Rate

Volume flow rate (QQ) can be calculated using the following formula:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volume flow rate
  • VV = Volume (in centilitres)
  • tt = Time (in seconds)

Alternatively, if you know the cross-sectional area (AA) through which the fluid is flowing and its average velocity (vv), the volume flow rate can also be calculated as:

Q=AvQ = A \cdot v

Where:

  • QQ = Volume flow rate (in cL/s if A is in cm2cm^2 and vv is in cm/s)
  • AA = Cross-sectional area
  • vv = Average velocity

For a deeper dive into fluid dynamics and flow rate, resources like Khan Academy's Fluid Mechanics section provide valuable insights.

Real-World Examples

While centilitres per second may not be the most common unit in everyday conversation, it finds applications in specific scenarios:

  • Medical Infusion: Intravenous (IV) drips often deliver fluids at rates measured in millilitres per hour or, equivalently, a fraction of a centilitre per second. For example, delivering 500 mL of saline solution over 4 hours equates to approximately 0.035 cL/s.

  • Laboratory Experiments: Precise fluid dispensing in chemical or biological experiments might involve flow rates measured in cL/s, particularly when using microfluidic devices.

  • Small Engine Fuel Consumption: The fuel consumption of very small engines, like those in model airplanes or some specialized equipment, could be characterized using cL/s.

  • Dosing Pumps: The flow rate of dosing pumps could be measured in centilitres per second.

Associated Laws and People

While there isn't a specific law or well-known person directly associated solely with the unit "centilitres per second," the underlying principles of fluid dynamics and flow rate are governed by various laws and principles, often attributed to:

  • Blaise Pascal: Pascal's Law is fundamental to understanding pressure in fluids.
  • Daniel Bernoulli: Bernoulli's principle relates fluid speed to pressure.
  • Osborne Reynolds: The Reynolds number is used to predict flow patterns, whether laminar or turbulent.

These figures and their contributions have significantly advanced the study of fluid mechanics, providing the foundation for understanding and quantifying flow rates, regardless of the specific units used.

Complete Cubic meters per second conversion table

Enter # of Cubic meters per second
Convert 1 m3/s to other unitsResult
Cubic meters per second to Cubic Millimeters per second (m3/s to mm3/s)1000000000
Cubic meters per second to Cubic Centimeters per second (m3/s to cm3/s)1000000
Cubic meters per second to Cubic Decimeters per second (m3/s to dm3/s)1000
Cubic meters per second to Cubic Decimeters per minute (m3/s to dm3/min)60000
Cubic meters per second to Cubic Decimeters per hour (m3/s to dm3/h)3600000
Cubic meters per second to Cubic Decimeters per day (m3/s to dm3/d)86400000
Cubic meters per second to Cubic Decimeters per year (m3/s to dm3/a)31557600000
Cubic meters per second to Millilitres per second (m3/s to ml/s)1000000
Cubic meters per second to Centilitres per second (m3/s to cl/s)100000
Cubic meters per second to Decilitres per second (m3/s to dl/s)10000
Cubic meters per second to Litres per second (m3/s to l/s)1000
Cubic meters per second to Litres per minute (m3/s to l/min)60000
Cubic meters per second to Litres per hour (m3/s to l/h)3600000
Cubic meters per second to Litres per day (m3/s to l/d)86400000
Cubic meters per second to Litres per year (m3/s to l/a)31557600000
Cubic meters per second to Kilolitres per second (m3/s to kl/s)1
Cubic meters per second to Kilolitres per minute (m3/s to kl/min)60
Cubic meters per second to Kilolitres per hour (m3/s to kl/h)3600
Cubic meters per second to Cubic meters per minute (m3/s to m3/min)60
Cubic meters per second to Cubic meters per hour (m3/s to m3/h)3600
Cubic meters per second to Cubic meters per day (m3/s to m3/d)86400
Cubic meters per second to Cubic meters per year (m3/s to m3/a)31557600
Cubic meters per second to Cubic kilometers per second (m3/s to km3/s)1e-9
Cubic meters per second to Teaspoons per second (m3/s to tsp/s)202884.1362
Cubic meters per second to Tablespoons per second (m3/s to Tbs/s)67628.0454
Cubic meters per second to Cubic inches per second (m3/s to in3/s)61024.025374023
Cubic meters per second to Cubic inches per minute (m3/s to in3/min)3661441.5224414
Cubic meters per second to Cubic inches per hour (m3/s to in3/h)219686491.34648
Cubic meters per second to Fluid Ounces per second (m3/s to fl-oz/s)33814.0227
Cubic meters per second to Fluid Ounces per minute (m3/s to fl-oz/min)2028841.362
Cubic meters per second to Fluid Ounces per hour (m3/s to fl-oz/h)121730481.72
Cubic meters per second to Cups per second (m3/s to cup/s)4226.7528375
Cubic meters per second to Pints per second (m3/s to pnt/s)2113.37641875
Cubic meters per second to Pints per minute (m3/s to pnt/min)126802.585125
Cubic meters per second to Pints per hour (m3/s to pnt/h)7608155.1075
Cubic meters per second to Quarts per second (m3/s to qt/s)1056.688209375
Cubic meters per second to Gallons per second (m3/s to gal/s)264.17205234375
Cubic meters per second to Gallons per minute (m3/s to gal/min)15850.323140625
Cubic meters per second to Gallons per hour (m3/s to gal/h)951019.3884375
Cubic meters per second to Cubic feet per second (m3/s to ft3/s)35.314684921034
Cubic meters per second to Cubic feet per minute (m3/s to ft3/min)2118.8810952621
Cubic meters per second to Cubic feet per hour (m3/s to ft3/h)127132.86571572
Cubic meters per second to Cubic yards per second (m3/s to yd3/s)1.3079493708587
Cubic meters per second to Cubic yards per minute (m3/s to yd3/min)78.476962251525
Cubic meters per second to Cubic yards per hour (m3/s to yd3/h)4708.6177350915

Volume flow rate conversions