Cubic meters per second (m3/s) | Gallons per hour (gal/h) |
---|---|
0 | 0 |
1 | 951019.3884375 |
2 | 1902038.776875 |
3 | 2853058.1653125 |
4 | 3804077.55375 |
5 | 4755096.9421875 |
6 | 5706116.330625 |
7 | 6657135.7190625 |
8 | 7608155.1075 |
9 | 8559174.4959375 |
10 | 9510193.884375 |
20 | 19020387.76875 |
30 | 28530581.653125 |
40 | 38040775.5375 |
50 | 47550969.421875 |
60 | 57061163.30625 |
70 | 66571357.190625 |
80 | 76081551.075 |
90 | 85591744.959375 |
100 | 95101938.84375 |
1000 | 951019388.4375 |
Converting between cubic meters per second () and gallons per hour (gal/hr) involves understanding the relationship between metric and imperial units of volume and time. This conversion is commonly encountered in fields like fluid mechanics, environmental engineering, and industrial processes.
To convert cubic meters per second to gallons per hour, you need two primary conversion factors:
To convert 1 cubic meter per second to gallons per hour:
Convert cubic meters to gallons:
Convert seconds to hours:
Therefore, 1 cubic meter per second is approximately 941,019.2 gallons per hour.
The conversion formula can be expressed as:
To convert 1 gallon per hour to cubic meters per second:
Convert gallons to cubic meters:
Convert hours to seconds:
Therefore, 1 gallon per hour is approximately cubic meters per second.
The conversion formula can be expressed as:
The concept of volume flow rate is fundamental in fluid dynamics, a field extensively studied by scientists and engineers. One notable figure is Osborne Reynolds, an Irish engineer and physicist. Reynolds made significant contributions to fluid mechanics, particularly in understanding fluid flow behavior, such as laminar and turbulent flow. The Reynolds number, a dimensionless quantity, is named in his honor and is used to predict flow patterns in different fluid flow situations.
River Discharge:
Industrial Pumping:
Wastewater Treatment:
Irrigation Systems:
These examples illustrate how conversions between cubic meters per second and gallons per hour are essential in various practical applications, providing a common ground for understanding and comparing flow rates across different measurement systems.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Gallons per hour to other unit conversions.
Cubic meters per second () is the SI unit for volume flow rate, representing the volume of fluid passing a given point per unit of time. It's a measure of how quickly a volume of fluid is moving.
One cubic meter per second is equivalent to a volume of one cubic meter flowing past a point in one second. It is derived from the base SI units of length (meter) and time (second).
The volume flow rate () can be defined mathematically as:
Where:
Alternatively, if you know the cross-sectional area () of the flow and the average velocity () of the fluid, you can calculate the volume flow rate as:
Where:
Volume flow rate is closely related to mass flow rate (), which represents the mass of fluid passing a point per unit of time. The relationship between them is:
Where:
While no specific law or famous person is directly linked to the unit itself, the concept of fluid dynamics, which uses volume flow rate extensively, is deeply rooted in the work of scientists and engineers like:
These concepts form the foundation for understanding and applying volume flow rate in various fields.
"Per hour" specifies the time frame over which the volume of gallons is measured. It represents the rate at which something is flowing or being consumed during each hour.
Gallons per hour combines the unit of volume (gallons) with a unit of time (hour) to express flow rate. It indicates how many gallons of a substance pass through a given point in one hour. The formula to calculate flow rate in GPH is:
While no specific law or famous person is directly linked to the "gallons per hour" unit itself, the concept of volume flow rate is fundamental in fluid dynamics and engineering. People like Evangelista Torricelli, who studied fluid flow and pressure, laid groundwork for understanding fluid dynamics concepts. Torricelli's law relates the speed of fluid flowing out of an opening to the height of fluid above the opening. Torricelli's Law is derived from the conservation of energy and is a cornerstone in understanding fluid dynamics.
The measurement of flow rates is crucial in numerous applications, from simple household uses to complex industrial processes.
Convert 1 m3/s to other units | Result |
---|---|
Cubic meters per second to Cubic Millimeters per second (m3/s to mm3/s) | 1000000000 |
Cubic meters per second to Cubic Centimeters per second (m3/s to cm3/s) | 1000000 |
Cubic meters per second to Cubic Decimeters per second (m3/s to dm3/s) | 1000 |
Cubic meters per second to Cubic Decimeters per minute (m3/s to dm3/min) | 60000 |
Cubic meters per second to Cubic Decimeters per hour (m3/s to dm3/h) | 3600000 |
Cubic meters per second to Cubic Decimeters per day (m3/s to dm3/d) | 86400000 |
Cubic meters per second to Cubic Decimeters per year (m3/s to dm3/a) | 31557600000 |
Cubic meters per second to Millilitres per second (m3/s to ml/s) | 1000000 |
Cubic meters per second to Centilitres per second (m3/s to cl/s) | 100000 |
Cubic meters per second to Decilitres per second (m3/s to dl/s) | 10000 |
Cubic meters per second to Litres per second (m3/s to l/s) | 1000 |
Cubic meters per second to Litres per minute (m3/s to l/min) | 60000 |
Cubic meters per second to Litres per hour (m3/s to l/h) | 3600000 |
Cubic meters per second to Litres per day (m3/s to l/d) | 86400000 |
Cubic meters per second to Litres per year (m3/s to l/a) | 31557600000 |
Cubic meters per second to Kilolitres per second (m3/s to kl/s) | 1 |
Cubic meters per second to Kilolitres per minute (m3/s to kl/min) | 60 |
Cubic meters per second to Kilolitres per hour (m3/s to kl/h) | 3600 |
Cubic meters per second to Cubic meters per minute (m3/s to m3/min) | 60 |
Cubic meters per second to Cubic meters per hour (m3/s to m3/h) | 3600 |
Cubic meters per second to Cubic meters per day (m3/s to m3/d) | 86400 |
Cubic meters per second to Cubic meters per year (m3/s to m3/a) | 31557600 |
Cubic meters per second to Cubic kilometers per second (m3/s to km3/s) | 1e-9 |
Cubic meters per second to Teaspoons per second (m3/s to tsp/s) | 202884.1362 |
Cubic meters per second to Tablespoons per second (m3/s to Tbs/s) | 67628.0454 |
Cubic meters per second to Cubic inches per second (m3/s to in3/s) | 61024.025374023 |
Cubic meters per second to Cubic inches per minute (m3/s to in3/min) | 3661441.5224414 |
Cubic meters per second to Cubic inches per hour (m3/s to in3/h) | 219686491.34648 |
Cubic meters per second to Fluid Ounces per second (m3/s to fl-oz/s) | 33814.0227 |
Cubic meters per second to Fluid Ounces per minute (m3/s to fl-oz/min) | 2028841.362 |
Cubic meters per second to Fluid Ounces per hour (m3/s to fl-oz/h) | 121730481.72 |
Cubic meters per second to Cups per second (m3/s to cup/s) | 4226.7528375 |
Cubic meters per second to Pints per second (m3/s to pnt/s) | 2113.37641875 |
Cubic meters per second to Pints per minute (m3/s to pnt/min) | 126802.585125 |
Cubic meters per second to Pints per hour (m3/s to pnt/h) | 7608155.1075 |
Cubic meters per second to Quarts per second (m3/s to qt/s) | 1056.688209375 |
Cubic meters per second to Gallons per second (m3/s to gal/s) | 264.17205234375 |
Cubic meters per second to Gallons per minute (m3/s to gal/min) | 15850.323140625 |
Cubic meters per second to Gallons per hour (m3/s to gal/h) | 951019.3884375 |
Cubic meters per second to Cubic feet per second (m3/s to ft3/s) | 35.314684921034 |
Cubic meters per second to Cubic feet per minute (m3/s to ft3/min) | 2118.8810952621 |
Cubic meters per second to Cubic feet per hour (m3/s to ft3/h) | 127132.86571572 |
Cubic meters per second to Cubic yards per second (m3/s to yd3/s) | 1.3079493708587 |
Cubic meters per second to Cubic yards per minute (m3/s to yd3/min) | 78.476962251525 |
Cubic meters per second to Cubic yards per hour (m3/s to yd3/h) | 4708.6177350915 |