Cubic meters per second (m3/s) to Litres per minute (l/min) conversion

Cubic meters per second to Litres per minute conversion table

Cubic meters per second (m3/s)Litres per minute (l/min)
00
160000
2120000
3180000
4240000
5300000
6360000
7420000
8480000
9540000
10600000
201200000
301800000
402400000
503000000
603600000
704200000
804800000
905400000
1006000000
100060000000

How to convert cubic meters per second to litres per minute?

Certainly! To convert cubic meters per second (m³/s) to liters per minute (L/min), you need to understand the relationships between these units:

1 cubic meter (m³) is equal to 1,000 liters (L). 1 minute is equal to 60 seconds.

To perform the conversion, you can follow these steps:

  1. Convert cubic meters to liters: Since 1 cubic meter = 1,000 liters, 1 m³/s = 1,000 liters per second (L/s).

  2. Convert liters per second to liters per minute: Since 1 minute = 60 seconds, 1,000 L/s * 60 = 60,000 liters per minute (L/min).

Therefore, 1 cubic meter per second (m³/s) is equal to 60,000 liters per minute (L/min).

Real World Examples

  • River Discharge: A small river might have a flow rate of 2 m³/s. Converting that to liters per minute: 2m3/s×60,000Lmin=120,000L/min2 \, \text{m}³/\text{s} \times 60,000 \, \frac{\text{L}}{\text{min}} = 120,000 \, \text{L/min}

  • Fire Hydrants: A powerful fire hydrant might release water at a rate of 0.05 m³/s. Converting that: 0.05m3/s×60,000Lmin=3,000L/min0.05 \, \text{m}³/\text{s} \times 60,000 \, \frac{\text{L}}{\text{min}} = 3,000 \, \text{L/min}

  • Water Treatment Plants: A medium-sized water treatment plant may have an output of 10 m³/s. Converting that: 10m3/s×60,000Lmin=600,000L/min10 \, \text{m}³/\text{s} \times 60,000 \, \frac{\text{L}}{\text{min}} = 600,000 \, \text{L/min}

  • Industrial Cooling: A large industrial cooling system might require a flow rate of 0.2 m³/s to dissipate heat. Converting that: 0.2m3/s×60,000Lmin=12,000L/min0.2 \, \text{m}³/\text{s} \times 60,000 \, \frac{\text{L}}{\text{min}} = 12,000 \, \text{L/min}

These examples illustrate how different quantities of cubic meters per second can be visualized in terms of liters per minute, which are often more intuitive for daily usage scenarios.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Litres per minute to other unit conversions.

What is cubic meters per second?

What is Cubic meters per second?

Cubic meters per second (m3/sm^3/s) is the SI unit for volume flow rate, representing the volume of fluid passing a given point per unit of time. It's a measure of how quickly a volume of fluid is moving.

Understanding Cubic Meters per Second

Definition and Formation

One cubic meter per second is equivalent to a volume of one cubic meter flowing past a point in one second. It is derived from the base SI units of length (meter) and time (second).

Formula and Calculation

The volume flow rate (QQ) can be defined mathematically as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate in m3/sm^3/s
  • VV is the volume in m3m^3
  • tt is the time in seconds

Alternatively, if you know the cross-sectional area (AA) of the flow and the average velocity (vv) of the fluid, you can calculate the volume flow rate as:

Q=AvQ = A \cdot v

Where:

  • AA is the cross-sectional area in m2m^2
  • vv is the average velocity in m/sm/s

Relevance and Applications

Relationship with Mass Flow Rate

Volume flow rate is closely related to mass flow rate (m˙\dot{m}), which represents the mass of fluid passing a point per unit of time. The relationship between them is:

m˙=ρQ\dot{m} = \rho \cdot Q

Where:

  • m˙\dot{m} is the mass flow rate in kg/skg/s
  • ρ\rho is the density of the fluid in kg/m3kg/m^3
  • QQ is the volume flow rate in m3/sm^3/s

Real-World Examples

  • Rivers and Streams: Measuring the flow rate of rivers helps hydrologists manage water resources and predict floods. The Amazon River, for example, has an average discharge of about 209,000 m3/sm^3/s.
  • Industrial Processes: Chemical plants and refineries use flow meters to control the rate at which liquids and gases are transferred between tanks and reactors. For instance, controlling the flow rate of reactants in a chemical reactor is crucial for achieving the desired product yield.
  • HVAC Systems: Heating, ventilation, and air conditioning systems use fans and ducts to circulate air. The flow rate of air through these systems is measured in m3/sm^3/s to ensure proper ventilation and temperature control.
  • Water Supply: Municipal water supply systems use pumps to deliver water to homes and businesses. The flow rate of water through these systems is measured in m3/sm^3/s to ensure adequate water pressure and availability.
  • Hydropower: Hydroelectric power plants use the flow of water through turbines to generate electricity. The volume flow rate of water is a key factor in determining the power output of the plant. The Three Gorges Dam for example, diverts over 45,000 m3/sm^3/s during peak flow.

Interesting Facts and Historical Context

While no specific law or famous person is directly linked to the unit itself, the concept of fluid dynamics, which uses volume flow rate extensively, is deeply rooted in the work of scientists and engineers like:

  • Daniel Bernoulli: Known for Bernoulli's principle, which relates the pressure, velocity, and elevation of a fluid in a stream.
  • Osborne Reynolds: Famous for the Reynolds number, a dimensionless quantity used to predict the flow regime (laminar or turbulent) in a fluid.

These concepts form the foundation for understanding and applying volume flow rate in various fields.

What is Litres per minute?

Litres per minute (LPM) is a unit of volumetric flow rate, measuring the volume of liquid or gas that passes through a specific point in one minute. It is commonly used in various fields to quantify the rate of fluid transfer.

Understanding Litres per Minute (LPM)

LPM expresses how many litres of a substance flow through a given area in one minute. A litre is a unit of volume defined as 0.001 cubic meters, or 1000 cubic centimetres. Therefore, 1 LPM is equivalent to 1/1000 of a cubic meter per minute.

How is Litres per Minute Formed?

LPM is derived from the base units of volume (litres) and time (minutes). The formula to calculate flow rate in litres per minute is:

Flow Rate (LPM)=Volume (Litres)Time (Minutes)\text{Flow Rate (LPM)} = \frac{\text{Volume (Litres)}}{\text{Time (Minutes)}}

For example, if 50 litres of water flow out of a tap in one minute, the flow rate is 50 LPM.

Common Conversions

Here's a table of conversions between LPM and other common flow rate units:

Unit Conversion to LPM
1 Cubic Meter/Hour ≈ 16.67 LPM
1 Gallon/Minute (GPM) ≈ 3.785 LPM
1 Millilitre/Minute (mL/min) = 0.001 LPM

Real-World Applications and Examples

  • Medical Oxygen Delivery: Oxygen concentrators and ventilators often specify flow rates in LPM. A typical oxygen concentrator might deliver oxygen at a rate of 2-5 LPM.

  • Water Flow in a Household: The flow rate of water from a tap or showerhead is often measured in LPM. For instance, a water-saving showerhead might have a flow rate of 7-10 LPM.

  • Aquarium Filters: The performance of aquarium filters is often rated in LPM, indicating how quickly the filter can process the aquarium water. An aquarium filter might have a flow rate of 500 LPM.

  • HVAC Systems: Airflow in HVAC (Heating, Ventilation, and Air Conditioning) systems is sometimes specified in LPM, especially in smaller systems or components.

  • Industrial Processes: Many industrial processes involving fluids, such as chemical mixing or cooling, use LPM to measure and control flow rates.

Interesting Facts

While there isn't a specific "law" named after LPM, the principles of fluid dynamics and flow rate are governed by laws such as the Hagen-Poiseuille equation, which relates flow rate to pressure, viscosity, and dimensions of the pipe.

The measurement of flow rate has been crucial in the development of various technologies and industries, from water management to chemical engineering. The accurate measurement of flow is essential for efficiency, safety, and control in many processes. For more information on this, read the Fluid dynamics article from sciencelearn.org.nz.

Complete Cubic meters per second conversion table

Enter # of Cubic meters per second
Convert 1 m3/s to other unitsResult
Cubic meters per second to Cubic Millimeters per second (m3/s to mm3/s)1000000000
Cubic meters per second to Cubic Centimeters per second (m3/s to cm3/s)1000000
Cubic meters per second to Cubic Decimeters per second (m3/s to dm3/s)1000
Cubic meters per second to Cubic Decimeters per minute (m3/s to dm3/min)60000
Cubic meters per second to Cubic Decimeters per hour (m3/s to dm3/h)3600000
Cubic meters per second to Cubic Decimeters per day (m3/s to dm3/d)86400000
Cubic meters per second to Cubic Decimeters per year (m3/s to dm3/a)31557600000
Cubic meters per second to Millilitres per second (m3/s to ml/s)1000000
Cubic meters per second to Centilitres per second (m3/s to cl/s)100000
Cubic meters per second to Decilitres per second (m3/s to dl/s)10000
Cubic meters per second to Litres per second (m3/s to l/s)1000
Cubic meters per second to Litres per minute (m3/s to l/min)60000
Cubic meters per second to Litres per hour (m3/s to l/h)3600000
Cubic meters per second to Litres per day (m3/s to l/d)86400000
Cubic meters per second to Litres per year (m3/s to l/a)31557600000
Cubic meters per second to Kilolitres per second (m3/s to kl/s)1
Cubic meters per second to Kilolitres per minute (m3/s to kl/min)60
Cubic meters per second to Kilolitres per hour (m3/s to kl/h)3600
Cubic meters per second to Cubic meters per minute (m3/s to m3/min)60
Cubic meters per second to Cubic meters per hour (m3/s to m3/h)3600
Cubic meters per second to Cubic meters per day (m3/s to m3/d)86400
Cubic meters per second to Cubic meters per year (m3/s to m3/a)31557600
Cubic meters per second to Cubic kilometers per second (m3/s to km3/s)1e-9
Cubic meters per second to Teaspoons per second (m3/s to tsp/s)202884.1362
Cubic meters per second to Tablespoons per second (m3/s to Tbs/s)67628.0454
Cubic meters per second to Cubic inches per second (m3/s to in3/s)61024.025374023
Cubic meters per second to Cubic inches per minute (m3/s to in3/min)3661441.5224414
Cubic meters per second to Cubic inches per hour (m3/s to in3/h)219686491.34648
Cubic meters per second to Fluid Ounces per second (m3/s to fl-oz/s)33814.0227
Cubic meters per second to Fluid Ounces per minute (m3/s to fl-oz/min)2028841.362
Cubic meters per second to Fluid Ounces per hour (m3/s to fl-oz/h)121730481.72
Cubic meters per second to Cups per second (m3/s to cup/s)4226.7528375
Cubic meters per second to Pints per second (m3/s to pnt/s)2113.37641875
Cubic meters per second to Pints per minute (m3/s to pnt/min)126802.585125
Cubic meters per second to Pints per hour (m3/s to pnt/h)7608155.1075
Cubic meters per second to Quarts per second (m3/s to qt/s)1056.688209375
Cubic meters per second to Gallons per second (m3/s to gal/s)264.17205234375
Cubic meters per second to Gallons per minute (m3/s to gal/min)15850.323140625
Cubic meters per second to Gallons per hour (m3/s to gal/h)951019.3884375
Cubic meters per second to Cubic feet per second (m3/s to ft3/s)35.314684921034
Cubic meters per second to Cubic feet per minute (m3/s to ft3/min)2118.8810952621
Cubic meters per second to Cubic feet per hour (m3/s to ft3/h)127132.86571572
Cubic meters per second to Cubic yards per second (m3/s to yd3/s)1.3079493708587
Cubic meters per second to Cubic yards per minute (m3/s to yd3/min)78.476962251525
Cubic meters per second to Cubic yards per hour (m3/s to yd3/h)4708.6177350915

Volume flow rate conversions