Cubic feet per second (ft3/s) to Cubic meters per hour (m3/h) conversion

Cubic feet per second to Cubic meters per hour conversion table

Cubic feet per second (ft3/s)Cubic meters per hour (m3/h)
00
1101.94059519573
2203.88119039146
3305.8217855872
4407.76238078293
5509.70297597866
6611.64357117439
7713.58416637013
8815.52476156586
9917.46535676159
101019.4059519573
202038.8119039146
303058.217855872
404077.6238078293
505097.0297597866
606116.4357117439
707135.8416637013
808155.2476156586
909174.6535676159
10010194.059519573
1000101940.59519573

How to convert cubic feet per second to cubic meters per hour?

To convert cubic feet per second (CFS) to cubic meters per hour (m³/h), you need to follow these steps:

  1. Convert cubic feet to cubic meters: 1 cubic foot is equivalent to approximately 0.0283168 cubic meters (m³).

  2. Convert seconds to hours: There are 3600 seconds in an hour (60 seconds/minute * 60 minutes/hour).

So, to convert 1 cubic foot per second to cubic meters per hour:

1 CFS=1 cubic foot/second×0.0283168 cubic meters/cubic foot×3600 seconds/hour 1 \text{ CFS} = 1 \text{ cubic foot/second} \times 0.0283168 \text{ cubic meters/cubic foot} \times 3600 \text{ seconds/hour}

1 CFS=0.0283168 m³×3600 s/hr 1 \text{ CFS} = 0.0283168 \text{ m³} \times 3600 \text{ s/hr}

1 CFS101.7 m³/h 1 \text{ CFS} \approx 101.7 \text{ m³/h}

Hence, 1 cubic foot per second is approximately 101.7 cubic meters per hour.

Real-World Example Conversions

Here are some examples of other quantities of cubic feet per second and their equivalents in cubic meters per hour:

  1. 5 cubic feet per second (CFS): 5 CFS=5×101.7 m³/h=508.5 m³/h 5 \text{ CFS} = 5 \times 101.7 \text{ m³/h} = 508.5 \text{ m³/h}

  2. 10 cubic feet per second (CFS): 10 CFS=10×101.7 m³/h=1017 m³/h 10 \text{ CFS} = 10 \times 101.7 \text{ m³/h} = 1017 \text{ m³/h}

  3. 0.5 cubic feet per second (CFS): 0.5 CFS=0.5×101.7 m³/h=50.85 m³/h 0.5 \text{ CFS} = 0.5 \times 101.7 \text{ m³/h} = 50.85 \text{ m³/h}

Real-World Contexts

Understanding the flow rate in both CFS and m³/h can be useful in various applications:

  1. Water Supply: Engineers may need to know the rate at which water is supplied to a treatment plant. For example, a plant receiving 50 CFS of water would receive approximately 5085 m³/h.

  2. River Discharge: Hydrologists often measure river discharge in cubic feet per second. For instance, a river with a discharge of 100 CFS is carrying approximately 10,170 m³/h, which can help in flood forecasting and management.

  3. Industrial Processes: In an industrial setting, the flow rate of gases or fluids through pipelines might be measured in CFS. Knowing the equivalent in m³/h can be important for aligning with international standards or regulations.

By converting these measurements, professionals across different fields can ensure proper design, operational efficiency, and regulatory compliance.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per hour to other unit conversions.

What is Cubic Feet per Second?

Cubic feet per second (CFS) is a unit of measurement that expresses the volume of a substance (typically fluid) flowing per unit of time. Specifically, one CFS is equivalent to a volume of one cubic foot passing a point in one second. It's a rate, not a total volume.

1 CFS=1ft3s1 \text{ CFS} = 1 \frac{\text{ft}^3}{\text{s}}

Formation of Cubic Feet per Second

CFS is derived from the fundamental units of volume (cubic feet, ft3ft^3) and time (seconds, ss). The volume is usually calculated based on area and velocity of the fluid flow. It essentially quantifies how quickly a volume is moving.

Key Concepts and Formulas

The volume flow rate (QQ) can be calculated using the following formula:

Q=AvQ = A \cdot v

Where:

  • QQ is the volume flow rate (CFS)
  • AA is the cross-sectional area of the flow (ft2ft^2)
  • vv is the average velocity of the flow (ft/sft/s)

Alternatively, if you know the volume (VV) that passes a point over a certain time (tt):

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate (CFS)
  • VV is the volume (ft3ft^3)
  • tt is the time (seconds)

Notable Associations

While there isn't a specific "law" named after someone directly tied to CFS, the principles behind its use are rooted in fluid dynamics, a field heavily influenced by:

  • Isaac Newton: His work on fluid resistance and viscosity laid the foundation for understanding fluid flow.
  • Daniel Bernoulli: Known for Bernoulli's principle, which relates fluid pressure to velocity and elevation. This principle is crucial in analyzing flow rates.

For a more in-depth understanding of the relationship between pressure and velocity, refer to Bernoulli's Principle from NASA.

Real-World Examples

  1. River Flows: The flow rate of rivers and streams is often measured in CFS. For example, a small stream might have a flow of 5 CFS during normal conditions, while a large river during a flood could reach thousands of CFS. The USGS WaterWatch website provides real-time streamflow data across the United States, often reported in CFS.

  2. Water Supply: Municipal water systems need to deliver water at a specific rate to meet demand. The flow rate in water pipes is calculated and monitored in CFS or related units (like gallons per minute, which can be converted to CFS) to ensure adequate supply.

  3. Industrial Processes: Many industrial processes rely on controlling the flow rate of liquids and gases. For example, a chemical plant might need to pump reactants into a reactor at a precise flow rate measured in CFS.

  4. HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is sometimes specified in cubic feet per minute (CFM), which can be easily converted to CFS by dividing by 60 (since there are 60 seconds in a minute). This helps ensure proper ventilation and temperature control.

What is Cubic meters per hour?

Cubic meters per hour (m3/hm^3/h) is a unit of volumetric flow rate. It quantifies the volume of a substance that passes through a specific area per unit of time, specifically, the number of cubic meters that flow in one hour. It's commonly used for measuring the flow of liquids and gases in various industrial and environmental applications.

Understanding Cubic Meters

A cubic meter (m3m^3) is the SI unit of volume. It represents the amount of space occupied by a cube with sides of 1 meter each. Think of it as a volume equal to filling a cube that is 1 meter wide, 1 meter long, and 1 meter high.

Defining "Per Hour"

"Per hour" indicates the rate at which the cubic meters are moving. So, a flow rate of 1 m3/hm^3/h means that one cubic meter of substance passes a specific point every hour.

Formula and Calculation

The volumetric flow rate (Q) in cubic meters per hour can be calculated using the following formula:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volumetric flow rate (m3/hm^3/h)
  • VV = Volume (m3m^3)
  • tt = Time (hours)

Factors Influencing Cubic Meters per Hour

Several factors can influence the flow rate measured in cubic meters per hour:

  • Pressure: Higher pressure generally leads to a higher flow rate, especially for gases.
  • Viscosity: More viscous fluids flow slower, resulting in a lower flow rate.
  • Pipe Diameter: A wider pipe allows for a higher flow rate, assuming other factors are constant.
  • Temperature: Temperature can affect the density and viscosity of fluids, indirectly influencing the flow rate.

Real-World Examples

  • Water Usage: A household might use 0.5 m3/hm^3/h of water during peak usage times (showering, washing dishes, etc.).
  • Industrial Processes: A chemical plant might pump a reactant liquid at a rate of 5 m3/hm^3/h into a reactor.
  • HVAC Systems: Air conditioners and ventilation systems are often rated by the volume of air they can move, which is expressed in m3/hm^3/h. For example, a residential HVAC system might have a flow rate of 200 m3/hm^3/h.
  • River Discharge: The flow rate of a river can be measured in cubic meters per hour, especially during flood monitoring. It helps to estimate the amount of water that is passing through a cross section of the river.

Historical Context and Notable Figures

While there's no specific "law" or famous historical figure directly associated with the unit "cubic meters per hour," the underlying principles are rooted in fluid dynamics and thermodynamics. Figures like Isaac Newton (laws of motion, viscosity) and Daniel Bernoulli (Bernoulli's principle relating pressure and velocity) laid the groundwork for understanding fluid flow, which is essential for measuring and utilizing flow rates in m3/hm^3/h.

Complete Cubic feet per second conversion table

Enter # of Cubic feet per second
Convert 1 ft3/s to other unitsResult
Cubic feet per second to Cubic Millimeters per second (ft3/s to mm3/s)28316831.998815
Cubic feet per second to Cubic Centimeters per second (ft3/s to cm3/s)28316.831998815
Cubic feet per second to Cubic Decimeters per second (ft3/s to dm3/s)28.316831998815
Cubic feet per second to Cubic Decimeters per minute (ft3/s to dm3/min)1699.0099199289
Cubic feet per second to Cubic Decimeters per hour (ft3/s to dm3/h)101940.59519573
Cubic feet per second to Cubic Decimeters per day (ft3/s to dm3/d)2446574.2846976
Cubic feet per second to Cubic Decimeters per year (ft3/s to dm3/a)893611257.48579
Cubic feet per second to Millilitres per second (ft3/s to ml/s)28316.831998815
Cubic feet per second to Centilitres per second (ft3/s to cl/s)2831.6831998815
Cubic feet per second to Decilitres per second (ft3/s to dl/s)283.16831998815
Cubic feet per second to Litres per second (ft3/s to l/s)28.316831998815
Cubic feet per second to Litres per minute (ft3/s to l/min)1699.0099199289
Cubic feet per second to Litres per hour (ft3/s to l/h)101940.59519573
Cubic feet per second to Litres per day (ft3/s to l/d)2446574.2846976
Cubic feet per second to Litres per year (ft3/s to l/a)893611257.48579
Cubic feet per second to Kilolitres per second (ft3/s to kl/s)0.02831683199881
Cubic feet per second to Kilolitres per minute (ft3/s to kl/min)1.6990099199289
Cubic feet per second to Kilolitres per hour (ft3/s to kl/h)101.94059519573
Cubic feet per second to Cubic meters per second (ft3/s to m3/s)0.02831683199881
Cubic feet per second to Cubic meters per minute (ft3/s to m3/min)1.6990099199289
Cubic feet per second to Cubic meters per hour (ft3/s to m3/h)101.94059519573
Cubic feet per second to Cubic meters per day (ft3/s to m3/d)2446.5742846976
Cubic feet per second to Cubic meters per year (ft3/s to m3/a)893611.25748579
Cubic feet per second to Cubic kilometers per second (ft3/s to km3/s)2.8316831998815e-11
Cubic feet per second to Teaspoons per second (ft3/s to tsp/s)5745.036
Cubic feet per second to Tablespoons per second (ft3/s to Tbs/s)1915.012
Cubic feet per second to Cubic inches per second (ft3/s to in3/s)1728.0070744076
Cubic feet per second to Cubic inches per minute (ft3/s to in3/min)103680.42446446
Cubic feet per second to Cubic inches per hour (ft3/s to in3/h)6220825.4678674
Cubic feet per second to Fluid Ounces per second (ft3/s to fl-oz/s)957.506
Cubic feet per second to Fluid Ounces per minute (ft3/s to fl-oz/min)57450.36
Cubic feet per second to Fluid Ounces per hour (ft3/s to fl-oz/h)3447021.6
Cubic feet per second to Cups per second (ft3/s to cup/s)119.68825
Cubic feet per second to Pints per second (ft3/s to pnt/s)59.844125
Cubic feet per second to Pints per minute (ft3/s to pnt/min)3590.6475
Cubic feet per second to Pints per hour (ft3/s to pnt/h)215438.85
Cubic feet per second to Quarts per second (ft3/s to qt/s)29.9220625
Cubic feet per second to Gallons per second (ft3/s to gal/s)7.480515625
Cubic feet per second to Gallons per minute (ft3/s to gal/min)448.8309375
Cubic feet per second to Gallons per hour (ft3/s to gal/h)26929.85625
Cubic feet per second to Cubic feet per minute (ft3/s to ft3/min)60
Cubic feet per second to Cubic feet per hour (ft3/s to ft3/h)3600
Cubic feet per second to Cubic yards per second (ft3/s to yd3/s)0.03703698259756
Cubic feet per second to Cubic yards per minute (ft3/s to yd3/min)2.2222189558537
Cubic feet per second to Cubic yards per hour (ft3/s to yd3/h)133.33313735122

Volume flow rate conversions