Cubic feet per second (ft3/s) to Litres per second (l/s) conversion

Cubic feet per second to Litres per second conversion table

Cubic feet per second (ft3/s)Litres per second (l/s)
00
128.316831998815
256.633663997629
384.950495996444
4113.26732799526
5141.58415999407
6169.90099199289
7198.2178239917
8226.53465599052
9254.85148798933
10283.16831998815
20566.33663997629
30849.50495996444
401132.6732799526
501415.8415999407
601699.0099199289
701982.178239917
802265.3465599052
902548.5148798933
1002831.6831998815
100028316.831998815

How to convert cubic feet per second to litres per second?

Cubic feet per second (cfs or ft³/s) is a common unit of measure in hydrology, fluid dynamics, and various engineering fields to quantify the rate at which a volume of fluid (usually water) flows.

To convert cubic feet per second to liters per second (L/s), you can use the conversion factor between cubic feet and liters. Specifically, 1 cubic foot is approximately equal to 28.3168 liters.

So, the conversion can be performed using the following calculation:

1 ft3/s×28.3168 L/ft3=28.3168 L/s1 \text{ ft}^3/\text{s} \times 28.3168 \text{ L/ft}^3 = 28.3168 \text{ L/s}

Therefore, 1 cubic foot per second is equal to 28.3168 liters per second.

Real-World Examples for Other Quantities of Cubic Feet per Second

  1. A Small Stream:

    • Often, small streams might have flows around 10 ft³/s.
    • Conversion: 10 ft3/s×28.3168=283.168 L/s10 \text{ ft}^3/\text{s} \times 28.3168 = 283.168 \text{ L/s}
  2. A Moderate River:

    • A moderate-sized river could have a flow rate of around 1,000 ft³/s.
    • Conversion: 1,000 ft3/s×28.3168=28,316.8 L/s1,000 \text{ ft}^3/\text{s} \times 28.3168 = 28,316.8 \text{ L/s}
  3. A Major River:

    • Large rivers, like the Mississippi River at certain points, can exhibit flows of around 600,000 ft³/s.
    • Conversion: 600,000 ft3/s×28.3168=16,990,080 L/s600,000 \text{ ft}^3/\text{s} \times 28.3168 = 16,990,080 \text{ L/s}
  4. Water Supply Pipe:

    • A water supply pipe for a residential area might carry about 5 ft³/s.
    • Conversion: 5 ft3/s×28.3168=141.584 L/s5 \text{ ft}^3/\text{s} \times 28.3168 = 141.584 \text{ L/s}
  5. Irrigation Canal:

    • An irrigation canal might have a flow rate of 500 ft³/s.
    • Conversion: 500 ft3/s×28.3168=14,158.4 L/s500 \text{ ft}^3/\text{s} \times 28.3168 = 14,158.4 \text{ L/s}

Understanding these conversions helps quantify and communicate water usage more effectively, aiding in tasks ranging from small-scale plumbing projects to large-scale water resource management.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Litres per second to other unit conversions.

What is Cubic Feet per Second?

Cubic feet per second (CFS) is a unit of measurement that expresses the volume of a substance (typically fluid) flowing per unit of time. Specifically, one CFS is equivalent to a volume of one cubic foot passing a point in one second. It's a rate, not a total volume.

1 CFS=1ft3s1 \text{ CFS} = 1 \frac{\text{ft}^3}{\text{s}}

Formation of Cubic Feet per Second

CFS is derived from the fundamental units of volume (cubic feet, ft3ft^3) and time (seconds, ss). The volume is usually calculated based on area and velocity of the fluid flow. It essentially quantifies how quickly a volume is moving.

Key Concepts and Formulas

The volume flow rate (QQ) can be calculated using the following formula:

Q=AvQ = A \cdot v

Where:

  • QQ is the volume flow rate (CFS)
  • AA is the cross-sectional area of the flow (ft2ft^2)
  • vv is the average velocity of the flow (ft/sft/s)

Alternatively, if you know the volume (VV) that passes a point over a certain time (tt):

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate (CFS)
  • VV is the volume (ft3ft^3)
  • tt is the time (seconds)

Notable Associations

While there isn't a specific "law" named after someone directly tied to CFS, the principles behind its use are rooted in fluid dynamics, a field heavily influenced by:

  • Isaac Newton: His work on fluid resistance and viscosity laid the foundation for understanding fluid flow.
  • Daniel Bernoulli: Known for Bernoulli's principle, which relates fluid pressure to velocity and elevation. This principle is crucial in analyzing flow rates.

For a more in-depth understanding of the relationship between pressure and velocity, refer to Bernoulli's Principle from NASA.

Real-World Examples

  1. River Flows: The flow rate of rivers and streams is often measured in CFS. For example, a small stream might have a flow of 5 CFS during normal conditions, while a large river during a flood could reach thousands of CFS. The USGS WaterWatch website provides real-time streamflow data across the United States, often reported in CFS.

  2. Water Supply: Municipal water systems need to deliver water at a specific rate to meet demand. The flow rate in water pipes is calculated and monitored in CFS or related units (like gallons per minute, which can be converted to CFS) to ensure adequate supply.

  3. Industrial Processes: Many industrial processes rely on controlling the flow rate of liquids and gases. For example, a chemical plant might need to pump reactants into a reactor at a precise flow rate measured in CFS.

  4. HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is sometimes specified in cubic feet per minute (CFM), which can be easily converted to CFS by dividing by 60 (since there are 60 seconds in a minute). This helps ensure proper ventilation and temperature control.

What is Litres per second?

Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.

Understanding Litres per Second

A litre is a metric unit of volume equal to 0.001 cubic meters (m3m^3). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.

The relationship can be expressed as:

1L/s=0.001m3/s1 \, \text{L/s} = 0.001 \, \text{m}^3\text{/s}

How Litres per Second is Formed

Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:

Volume Flow Rate (L/s)=Volume (L)Time (s)\text{Volume Flow Rate (L/s)} = \frac{\text{Volume (L)}}{\text{Time (s)}}

For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.

Applications and Examples

  • Household Water Usage: A typical shower might use water at a rate of 0.1 to 0.2 L/s.
  • River Discharge: Measuring the flow rate of rivers is crucial for water resource management and flood control. A small stream might have a flow rate of a few L/s, while a large river can have a flow rate of hundreds or thousands of cubic meters per second.
  • Medical Applications: In medical settings, IV drip rates or ventilator flow rates are often measured in millilitres per second (mL/s) or litres per minute (L/min), which can be easily converted to L/s. For example, a ventilator might deliver air at a rate of 1 L/s to a patient.
  • Industrial Processes: Many industrial processes involve controlling the flow of liquids or gases. For example, a chemical plant might use pumps to transfer liquids at a rate of several L/s.
  • Firefighting: Fire hoses deliver water at high flow rates to extinguish fires, often measured in L/s. A typical fire hose might deliver water at a rate of 15-20 L/s.

Relevant Laws and Principles

While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:

  • Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where:

    • AA is the cross-sectional area of the flow.
    • vv is the velocity of the fluid.
  • Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.

Interesting Facts

  • Understanding flow rates is essential in designing efficient plumbing systems, irrigation systems, and hydraulic systems.
  • Flow rate measurements are crucial for environmental monitoring, helping to assess water quality and track pollution.
  • The efficient management of water resources depends heavily on accurate measurement and control of flow rates.

For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.

Complete Cubic feet per second conversion table

Enter # of Cubic feet per second
Convert 1 ft3/s to other unitsResult
Cubic feet per second to Cubic Millimeters per second (ft3/s to mm3/s)28316831.998815
Cubic feet per second to Cubic Centimeters per second (ft3/s to cm3/s)28316.831998815
Cubic feet per second to Cubic Decimeters per second (ft3/s to dm3/s)28.316831998815
Cubic feet per second to Cubic Decimeters per minute (ft3/s to dm3/min)1699.0099199289
Cubic feet per second to Cubic Decimeters per hour (ft3/s to dm3/h)101940.59519573
Cubic feet per second to Cubic Decimeters per day (ft3/s to dm3/d)2446574.2846976
Cubic feet per second to Cubic Decimeters per year (ft3/s to dm3/a)893611257.48579
Cubic feet per second to Millilitres per second (ft3/s to ml/s)28316.831998815
Cubic feet per second to Centilitres per second (ft3/s to cl/s)2831.6831998815
Cubic feet per second to Decilitres per second (ft3/s to dl/s)283.16831998815
Cubic feet per second to Litres per second (ft3/s to l/s)28.316831998815
Cubic feet per second to Litres per minute (ft3/s to l/min)1699.0099199289
Cubic feet per second to Litres per hour (ft3/s to l/h)101940.59519573
Cubic feet per second to Litres per day (ft3/s to l/d)2446574.2846976
Cubic feet per second to Litres per year (ft3/s to l/a)893611257.48579
Cubic feet per second to Kilolitres per second (ft3/s to kl/s)0.02831683199881
Cubic feet per second to Kilolitres per minute (ft3/s to kl/min)1.6990099199289
Cubic feet per second to Kilolitres per hour (ft3/s to kl/h)101.94059519573
Cubic feet per second to Cubic meters per second (ft3/s to m3/s)0.02831683199881
Cubic feet per second to Cubic meters per minute (ft3/s to m3/min)1.6990099199289
Cubic feet per second to Cubic meters per hour (ft3/s to m3/h)101.94059519573
Cubic feet per second to Cubic meters per day (ft3/s to m3/d)2446.5742846976
Cubic feet per second to Cubic meters per year (ft3/s to m3/a)893611.25748579
Cubic feet per second to Cubic kilometers per second (ft3/s to km3/s)2.8316831998815e-11
Cubic feet per second to Teaspoons per second (ft3/s to tsp/s)5745.036
Cubic feet per second to Tablespoons per second (ft3/s to Tbs/s)1915.012
Cubic feet per second to Cubic inches per second (ft3/s to in3/s)1728.0070744076
Cubic feet per second to Cubic inches per minute (ft3/s to in3/min)103680.42446446
Cubic feet per second to Cubic inches per hour (ft3/s to in3/h)6220825.4678674
Cubic feet per second to Fluid Ounces per second (ft3/s to fl-oz/s)957.506
Cubic feet per second to Fluid Ounces per minute (ft3/s to fl-oz/min)57450.36
Cubic feet per second to Fluid Ounces per hour (ft3/s to fl-oz/h)3447021.6
Cubic feet per second to Cups per second (ft3/s to cup/s)119.68825
Cubic feet per second to Pints per second (ft3/s to pnt/s)59.844125
Cubic feet per second to Pints per minute (ft3/s to pnt/min)3590.6475
Cubic feet per second to Pints per hour (ft3/s to pnt/h)215438.85
Cubic feet per second to Quarts per second (ft3/s to qt/s)29.9220625
Cubic feet per second to Gallons per second (ft3/s to gal/s)7.480515625
Cubic feet per second to Gallons per minute (ft3/s to gal/min)448.8309375
Cubic feet per second to Gallons per hour (ft3/s to gal/h)26929.85625
Cubic feet per second to Cubic feet per minute (ft3/s to ft3/min)60
Cubic feet per second to Cubic feet per hour (ft3/s to ft3/h)3600
Cubic feet per second to Cubic yards per second (ft3/s to yd3/s)0.03703698259756
Cubic feet per second to Cubic yards per minute (ft3/s to yd3/min)2.2222189558537
Cubic feet per second to Cubic yards per hour (ft3/s to yd3/h)133.33313735122

Volume flow rate conversions