Cubic feet per second (ft3/s) to Kilolitres per second (kl/s) conversion

Cubic feet per second to Kilolitres per second conversion table

Cubic feet per second (ft3/s)Kilolitres per second (kl/s)
00
10.02831683199881
20.05663366399763
30.08495049599644
40.1132673279953
50.1415841599941
60.1699009919929
70.1982178239917
80.2265346559905
90.2548514879893
100.2831683199881
200.5663366399763
300.8495049599644
401.1326732799526
501.4158415999407
601.6990099199289
701.982178239917
802.2653465599052
902.5485148798933
1002.8316831998815
100028.316831998815

How to convert cubic feet per second to kilolitres per second?

Converting cubic feet per second (cfs) to kilolitres per second (kL/s) involves two primary steps:

  1. Convert cubic feet to cubic meters: 1 cubic foot is approximately equal to 0.0283168 cubic meters.

  2. Convert cubic meters to kilolitres: 1 cubic meter is equal to 1 kilolitre.

Thus, the conversion factor becomes: 1 cfs=0.0283168 m3/s=0.0283168 kL/s1 \text{ cfs} = 0.0283168 \text{ m}^3/\text{s} = 0.0283168 \text{ kL/s}

Conversion Example

To convert 1 cubic foot per second (cfs) to kilolitres per second:

1 cfs×0.0283168 kL/s per cfs=0.0283168 kL/s1 \text{ cfs} \times 0.0283168 \text{ kL/s} \text{ per cfs} = 0.0283168 \text{ kL/s}

Real-World Examples

Here are some real-world examples for various flow rates in cubic feet per second and their equivalents in kilolitres per second:

  1. Small Stream: 5 cfs 5 cfs×0.0283168 kL/s per cfs=0.141584 kL/s5 \text{ cfs} \times 0.0283168 \text{ kL/s per cfs} = 0.141584 \text{ kL/s}

  2. Medium River: 100 cfs 100 cfs×0.0283168 kL/s per cfs=2.83168 kL/s100 \text{ cfs} \times 0.0283168 \text{ kL/s per cfs} = 2.83168 \text{ kL/s}

  3. Large River: 1000 cfs 1000 cfs×0.0283168 kL/s per cfs=28.3168 kL/s1000 \text{ cfs} \times 0.0283168 \text{ kL/s per cfs} = 28.3168 \text{ kL/s}

  4. Hydroelectric Power Plant Flow: 75,000 cfs 75,000 cfs×0.0283168 kL/s per cfs=2,123.76 kL/s75,000 \text{ cfs} \times 0.0283168 \text{ kL/s per cfs} = 2,123.76 \text{ kL/s}

  5. Extreme River Flood: 250,000 cfs (such as the flow rate of the Mississippi River during major flooding) 250,000 cfs×0.0283168 kL/s per cfs=7,079.20 kL/s250,000 \text{ cfs} \times 0.0283168 \text{ kL/s per cfs} = 7,079.20 \text{ kL/s}

These conversions provide an understanding of how large various flow rates are in kilolitres per second, which can be useful for various applications such as water resource management, engineering, and environmental science.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Kilolitres per second to other unit conversions.

What is Cubic Feet per Second?

Cubic feet per second (CFS) is a unit of measurement that expresses the volume of a substance (typically fluid) flowing per unit of time. Specifically, one CFS is equivalent to a volume of one cubic foot passing a point in one second. It's a rate, not a total volume.

1 CFS=1ft3s1 \text{ CFS} = 1 \frac{\text{ft}^3}{\text{s}}

Formation of Cubic Feet per Second

CFS is derived from the fundamental units of volume (cubic feet, ft3ft^3) and time (seconds, ss). The volume is usually calculated based on area and velocity of the fluid flow. It essentially quantifies how quickly a volume is moving.

Key Concepts and Formulas

The volume flow rate (QQ) can be calculated using the following formula:

Q=AvQ = A \cdot v

Where:

  • QQ is the volume flow rate (CFS)
  • AA is the cross-sectional area of the flow (ft2ft^2)
  • vv is the average velocity of the flow (ft/sft/s)

Alternatively, if you know the volume (VV) that passes a point over a certain time (tt):

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the volume flow rate (CFS)
  • VV is the volume (ft3ft^3)
  • tt is the time (seconds)

Notable Associations

While there isn't a specific "law" named after someone directly tied to CFS, the principles behind its use are rooted in fluid dynamics, a field heavily influenced by:

  • Isaac Newton: His work on fluid resistance and viscosity laid the foundation for understanding fluid flow.
  • Daniel Bernoulli: Known for Bernoulli's principle, which relates fluid pressure to velocity and elevation. This principle is crucial in analyzing flow rates.

For a more in-depth understanding of the relationship between pressure and velocity, refer to Bernoulli's Principle from NASA.

Real-World Examples

  1. River Flows: The flow rate of rivers and streams is often measured in CFS. For example, a small stream might have a flow of 5 CFS during normal conditions, while a large river during a flood could reach thousands of CFS. The USGS WaterWatch website provides real-time streamflow data across the United States, often reported in CFS.

  2. Water Supply: Municipal water systems need to deliver water at a specific rate to meet demand. The flow rate in water pipes is calculated and monitored in CFS or related units (like gallons per minute, which can be converted to CFS) to ensure adequate supply.

  3. Industrial Processes: Many industrial processes rely on controlling the flow rate of liquids and gases. For example, a chemical plant might need to pump reactants into a reactor at a precise flow rate measured in CFS.

  4. HVAC Systems: Airflow in heating, ventilation, and air conditioning (HVAC) systems is sometimes specified in cubic feet per minute (CFM), which can be easily converted to CFS by dividing by 60 (since there are 60 seconds in a minute). This helps ensure proper ventilation and temperature control.

What is Kilolitres per second?

Kilolitres per second (kL/s) is a unit used to measure volume flow rate, indicating the volume of fluid that passes through a given area per unit of time. Understanding this unit is crucial in various fields, from water management to industrial processes. Let's delve into its definition, formation, and real-world applications.

Definition of Kilolitres per second

A kilolitre per second (kL/s) represents the volume of 1,000 liters (one cubic meter) passing a specific point in one second. This unit is commonly used to quantify large flow rates, such as those encountered in rivers, pipelines, and industrial processes.

Formation and Conversion

Kilolitres per second is derived from the metric units of volume (litres or cubic meters) and time (seconds). The relationship is straightforward:

1kL/s=1000litres/second=1m3/second1 \, \text{kL/s} = 1000 \, \text{litres/second} = 1 \, \text{m}^3\text{/second}

To convert from other flow rate units, you can use the following relationships:

  • 1 kL/s = 3600 m³/hour
  • 1 kL/s ≈ 35.315 cubic feet per second (CFS)
  • 1 kL/s ≈ 15850.3 US gallons per minute (GPM)

Importance in Various Fields

Kilolitres per second (kL/s) as a flow rate unit is used in fields of engineering, hydrology and in general anywhere fluids are measured

  • Hydrology: Used to measure the flow rate of rivers, streams, and irrigation channels.
  • Water Management: Essential for monitoring and managing water resources in urban and agricultural settings.
  • Industrial Processes: Used to measure the flow rate of fluids in chemical plants, oil refineries, and power plants.
  • Environmental Engineering: Used to measure wastewater flow rates and stormwater runoff.

Real-World Examples

Here are some real-world examples to illustrate the scale of kilolitres per second:

  • River Flow: A moderate-sized river might have a flow rate of 10-100 kL/s during normal conditions, and much higher during flood events.
  • Wastewater Treatment Plant: A large wastewater treatment plant might process several kL/s of sewage.
  • Industrial Cooling: A power plant might use tens or hundreds of kL/s of water for cooling purposes.

Hydraulic Jump

While not directly related to a specific law or person associated solely with kilolitres per second, the concept of hydraulic jump in fluid dynamics is relevant. A hydraulic jump is a phenomenon where rapidly flowing liquid suddenly changes to a slower flow with a significant increase in depth. The flow rate, often measured in units like kL/s or m3/sm^3/s, is a critical factor in determining the characteristics of a hydraulic jump. Hydraulic Jump is a good start to understand this concept.

Complete Cubic feet per second conversion table

Enter # of Cubic feet per second
Convert 1 ft3/s to other unitsResult
Cubic feet per second to Cubic Millimeters per second (ft3/s to mm3/s)28316831.998815
Cubic feet per second to Cubic Centimeters per second (ft3/s to cm3/s)28316.831998815
Cubic feet per second to Cubic Decimeters per second (ft3/s to dm3/s)28.316831998815
Cubic feet per second to Cubic Decimeters per minute (ft3/s to dm3/min)1699.0099199289
Cubic feet per second to Cubic Decimeters per hour (ft3/s to dm3/h)101940.59519573
Cubic feet per second to Cubic Decimeters per day (ft3/s to dm3/d)2446574.2846976
Cubic feet per second to Cubic Decimeters per year (ft3/s to dm3/a)893611257.48579
Cubic feet per second to Millilitres per second (ft3/s to ml/s)28316.831998815
Cubic feet per second to Centilitres per second (ft3/s to cl/s)2831.6831998815
Cubic feet per second to Decilitres per second (ft3/s to dl/s)283.16831998815
Cubic feet per second to Litres per second (ft3/s to l/s)28.316831998815
Cubic feet per second to Litres per minute (ft3/s to l/min)1699.0099199289
Cubic feet per second to Litres per hour (ft3/s to l/h)101940.59519573
Cubic feet per second to Litres per day (ft3/s to l/d)2446574.2846976
Cubic feet per second to Litres per year (ft3/s to l/a)893611257.48579
Cubic feet per second to Kilolitres per second (ft3/s to kl/s)0.02831683199881
Cubic feet per second to Kilolitres per minute (ft3/s to kl/min)1.6990099199289
Cubic feet per second to Kilolitres per hour (ft3/s to kl/h)101.94059519573
Cubic feet per second to Cubic meters per second (ft3/s to m3/s)0.02831683199881
Cubic feet per second to Cubic meters per minute (ft3/s to m3/min)1.6990099199289
Cubic feet per second to Cubic meters per hour (ft3/s to m3/h)101.94059519573
Cubic feet per second to Cubic meters per day (ft3/s to m3/d)2446.5742846976
Cubic feet per second to Cubic meters per year (ft3/s to m3/a)893611.25748579
Cubic feet per second to Cubic kilometers per second (ft3/s to km3/s)2.8316831998815e-11
Cubic feet per second to Teaspoons per second (ft3/s to tsp/s)5745.036
Cubic feet per second to Tablespoons per second (ft3/s to Tbs/s)1915.012
Cubic feet per second to Cubic inches per second (ft3/s to in3/s)1728.0070744076
Cubic feet per second to Cubic inches per minute (ft3/s to in3/min)103680.42446446
Cubic feet per second to Cubic inches per hour (ft3/s to in3/h)6220825.4678674
Cubic feet per second to Fluid Ounces per second (ft3/s to fl-oz/s)957.506
Cubic feet per second to Fluid Ounces per minute (ft3/s to fl-oz/min)57450.36
Cubic feet per second to Fluid Ounces per hour (ft3/s to fl-oz/h)3447021.6
Cubic feet per second to Cups per second (ft3/s to cup/s)119.68825
Cubic feet per second to Pints per second (ft3/s to pnt/s)59.844125
Cubic feet per second to Pints per minute (ft3/s to pnt/min)3590.6475
Cubic feet per second to Pints per hour (ft3/s to pnt/h)215438.85
Cubic feet per second to Quarts per second (ft3/s to qt/s)29.9220625
Cubic feet per second to Gallons per second (ft3/s to gal/s)7.480515625
Cubic feet per second to Gallons per minute (ft3/s to gal/min)448.8309375
Cubic feet per second to Gallons per hour (ft3/s to gal/h)26929.85625
Cubic feet per second to Cubic feet per minute (ft3/s to ft3/min)60
Cubic feet per second to Cubic feet per hour (ft3/s to ft3/h)3600
Cubic feet per second to Cubic yards per second (ft3/s to yd3/s)0.03703698259756
Cubic feet per second to Cubic yards per minute (ft3/s to yd3/min)2.2222189558537
Cubic feet per second to Cubic yards per hour (ft3/s to yd3/h)133.33313735122

Volume flow rate conversions