Litres per second (l/s) to Cubic feet per minute (ft3/min) conversion

Litres per second to Cubic feet per minute conversion table

Litres per second (l/s)Cubic feet per minute (ft3/min)
00
12.1188810952621
24.2377621905241
36.3566432857862
48.4755243810483
510.59440547631
612.713286571572
714.832167666834
816.951048762097
919.069929857359
1021.188810952621
2042.377621905241
3063.566432857862
4084.755243810483
50105.9440547631
60127.13286571572
70148.32167666834
80169.51048762097
90190.69929857359
100211.88810952621
10002118.8810952621

How to convert litres per second to cubic feet per minute?

To convert from Litres per second (L/s) to Cubic feet per minute (CFM), follow these steps:

  1. Understand the unit conversions:

    • 1 litre = 0.0353147 cubic feet
    • There are 60 seconds in a minute

    Therefore, 1 L/s=1 litre/second×60 seconds/minute×0.0353147 cubic feet/litre1 \text{ L/s} = 1 \text{ litre/second} \times 60 \text{ seconds/minute} \times 0.0353147 \text{ cubic feet/litre}.

  2. Perform the conversion: 1 L/s=1×60×0.0353147 CFM=2.11888 CFM 1 \text{ L/s} = 1 \times 60 \times 0.0353147 \text{ CFM} = 2.11888 \text{ CFM}

Hence, 1 L/s is approximately 2.11888 CFM.

Real-World Examples for Different Quantities of Litres per Second

  1. Water Flow in Plumbing Systems:

    • A standard shower head typically flows at about 9.5 L/min, which converts to roughly 0.158 L/s.
    • For a higher-flow shower head, let's say with a flow rate of 15 L/min, this converts to 0.25 L/s.
    • Conversion to CFM: 0.158 L/s0.334CFM0.158 \text{ L/s} \approx 0.334 CFM and 0.25 L/s0.53CFM0.25 \text{ L/s} \approx 0.53 CFM.
  2. Airflow in HVAC Systems:

    • A household HVAC system might move air at around 500 CFM. To convert this to L/s: L/s=500 CFM2.11888236 L/s \text{L/s} = \frac{500 \text{ CFM}}{2.11888} \approx 236 \text{ L/s}
    • For a smaller office space HVAC system scaled to 200 CFM: L/s=200 CFM2.1188894.36 L/s \text{L/s} = \frac{200 \text{ CFM}}{2.11888} \approx 94.36 \text{ L/s}
  3. Agricultural Irrigation Systems:

    • An irrigation system may deliver 50 L/s (large scale agriculture): 50 L/s105.944 CFM 50 \text{ L/s} \approx 105.944 \text{ CFM}
    • For a smaller irrigation system, if it delivers 10 L/s: 10 L/s21.1888 CFM 10 \text{ L/s} \approx 21.1888 \text{ CFM}

These examples help illustrate both the calculation process for converting L/s to CFM and how these conversions apply in different real-world contexts.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic feet per minute to other unit conversions.

What is Litres per second?

Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.

Understanding Litres per Second

A litre is a metric unit of volume equal to 0.001 cubic meters (m3m^3). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.

The relationship can be expressed as:

1L/s=0.001m3/s1 \, \text{L/s} = 0.001 \, \text{m}^3\text{/s}

How Litres per Second is Formed

Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:

Volume Flow Rate (L/s)=Volume (L)Time (s)\text{Volume Flow Rate (L/s)} = \frac{\text{Volume (L)}}{\text{Time (s)}}

For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.

Applications and Examples

  • Household Water Usage: A typical shower might use water at a rate of 0.1 to 0.2 L/s.
  • River Discharge: Measuring the flow rate of rivers is crucial for water resource management and flood control. A small stream might have a flow rate of a few L/s, while a large river can have a flow rate of hundreds or thousands of cubic meters per second.
  • Medical Applications: In medical settings, IV drip rates or ventilator flow rates are often measured in millilitres per second (mL/s) or litres per minute (L/min), which can be easily converted to L/s. For example, a ventilator might deliver air at a rate of 1 L/s to a patient.
  • Industrial Processes: Many industrial processes involve controlling the flow of liquids or gases. For example, a chemical plant might use pumps to transfer liquids at a rate of several L/s.
  • Firefighting: Fire hoses deliver water at high flow rates to extinguish fires, often measured in L/s. A typical fire hose might deliver water at a rate of 15-20 L/s.

Relevant Laws and Principles

While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:

  • Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where:

    • AA is the cross-sectional area of the flow.
    • vv is the velocity of the fluid.
  • Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.

Interesting Facts

  • Understanding flow rates is essential in designing efficient plumbing systems, irrigation systems, and hydraulic systems.
  • Flow rate measurements are crucial for environmental monitoring, helping to assess water quality and track pollution.
  • The efficient management of water resources depends heavily on accurate measurement and control of flow rates.

For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.

What is cubic feet per minute?

What is Cubic feet per minute?

Cubic feet per minute (CFM) is a unit of measurement that expresses the volume of a substance (usually air or gas) flowing per minute. It's commonly used to measure airflow in ventilation, HVAC systems, and other industrial processes. Understanding CFM helps in selecting appropriate equipment and ensuring efficient system performance.

Understanding Cubic Feet per Minute (CFM)

Definition

CFM defines the amount of cubic feet that passes through a specific area in one minute. It is a standard unit for measuring volume flow rate in the United States.

How it is formed?

CFM is derived from the units of volume (cubic feet, ft3ft^3) and time (minutes, min). Therefore, 1 CFM means one cubic foot of a substance passes a specific point every minute.

Formula

The relationship between volume, time, and CFM can be expressed as:

CFM=Volume(ft3)Time(minutes)CFM = \frac{Volume (ft^3)}{Time (minutes)}

Real-World Applications and Examples

HVAC Systems

  • Home Ventilation: A typical bathroom exhaust fan might have a CFM rating of 50-100, depending on the bathroom's size. This ensures adequate removal of moisture and odors.
  • Air Conditioners: The CFM rating of a central air conditioning system is crucial for proper cooling. For instance, a 2.5-ton AC unit might require around 1000 CFM to effectively cool a space.
  • Furnaces: Furnaces use CFM to ensure proper airflow across the heat exchanger, maintaining efficiency and preventing overheating.

Industrial Applications

  • Pneumatic Tools: Air compressors powering pneumatic tools (like nail guns or impact wrenches) are often rated by CFM delivered at a certain pressure (PSI). For example, a heavy-duty impact wrench might require 5 CFM at 90 PSI.
  • Spray Painting: Air compressors used for spray painting need a specific CFM to atomize the paint properly. An automotive paint job may require a compressor delivering 10-15 CFM at 40 PSI.
  • Dust Collection: Dust collection systems in woodworking shops use CFM to extract sawdust and debris from the air, maintaining a clean and safe working environment. A small shop might use a system with 600-800 CFM.

Other Examples

  • Computer Cooling: Fans used to cool computer components (CPUs, GPUs) are rated in CFM to indicate how much air they can move across the heat sink.
  • Leaf Blowers: Leaf blowers are often specified by CFM, indicating their ability to move leaves and debris.

Interesting Facts

Standard Conditions

When comparing CFM values, it's important to note the conditions under which they were measured. Standard conditions for airflow are typically at a specific temperature and pressure (e.g., Standard Temperature and Pressure, or STP).

Conversion to Other Units

CFM can be converted to other volume flow rate units, such as cubic meters per hour (m3/hm^3/h) or liters per second (L/s), using appropriate conversion factors.

  • 1 CFM ≈ 1.699 m3/hm^3/h
  • 1 CFM ≈ 0.472 L/s

Relationship to Velocity

CFM is related to air velocity and the cross-sectional area of the flow. The formula linking these is:

CFM=Area(ft2)×Velocity(ft/min)CFM = Area (ft^2) \times Velocity (ft/min)

This relationship is crucial in designing ductwork and ventilation systems to ensure proper airflow. You can find more about this relationship on engineering websites such as How to measure air volume flow or air velocity?

Complete Litres per second conversion table

Enter # of Litres per second
Convert 1 l/s to other unitsResult
Litres per second to Cubic Millimeters per second (l/s to mm3/s)1000000
Litres per second to Cubic Centimeters per second (l/s to cm3/s)1000
Litres per second to Cubic Decimeters per second (l/s to dm3/s)1
Litres per second to Cubic Decimeters per minute (l/s to dm3/min)60
Litres per second to Cubic Decimeters per hour (l/s to dm3/h)3600
Litres per second to Cubic Decimeters per day (l/s to dm3/d)86400
Litres per second to Cubic Decimeters per year (l/s to dm3/a)31557600
Litres per second to Millilitres per second (l/s to ml/s)1000
Litres per second to Centilitres per second (l/s to cl/s)100
Litres per second to Decilitres per second (l/s to dl/s)10
Litres per second to Litres per minute (l/s to l/min)60
Litres per second to Litres per hour (l/s to l/h)3600
Litres per second to Litres per day (l/s to l/d)86400
Litres per second to Litres per year (l/s to l/a)31557600
Litres per second to Kilolitres per second (l/s to kl/s)0.001
Litres per second to Kilolitres per minute (l/s to kl/min)0.06
Litres per second to Kilolitres per hour (l/s to kl/h)3.6
Litres per second to Cubic meters per second (l/s to m3/s)0.001
Litres per second to Cubic meters per minute (l/s to m3/min)0.06
Litres per second to Cubic meters per hour (l/s to m3/h)3.6
Litres per second to Cubic meters per day (l/s to m3/d)86.4
Litres per second to Cubic meters per year (l/s to m3/a)31557.6
Litres per second to Cubic kilometers per second (l/s to km3/s)1e-12
Litres per second to Teaspoons per second (l/s to tsp/s)202.8841362
Litres per second to Tablespoons per second (l/s to Tbs/s)67.6280454
Litres per second to Cubic inches per second (l/s to in3/s)61.024025374023
Litres per second to Cubic inches per minute (l/s to in3/min)3661.4415224414
Litres per second to Cubic inches per hour (l/s to in3/h)219686.49134648
Litres per second to Fluid Ounces per second (l/s to fl-oz/s)33.8140227
Litres per second to Fluid Ounces per minute (l/s to fl-oz/min)2028.841362
Litres per second to Fluid Ounces per hour (l/s to fl-oz/h)121730.48172
Litres per second to Cups per second (l/s to cup/s)4.2267528375
Litres per second to Pints per second (l/s to pnt/s)2.11337641875
Litres per second to Pints per minute (l/s to pnt/min)126.802585125
Litres per second to Pints per hour (l/s to pnt/h)7608.1551075
Litres per second to Quarts per second (l/s to qt/s)1.056688209375
Litres per second to Gallons per second (l/s to gal/s)0.2641720523438
Litres per second to Gallons per minute (l/s to gal/min)15.850323140625
Litres per second to Gallons per hour (l/s to gal/h)951.0193884375
Litres per second to Cubic feet per second (l/s to ft3/s)0.03531468492103
Litres per second to Cubic feet per minute (l/s to ft3/min)2.1188810952621
Litres per second to Cubic feet per hour (l/s to ft3/h)127.13286571572
Litres per second to Cubic yards per second (l/s to yd3/s)0.001307949370859
Litres per second to Cubic yards per minute (l/s to yd3/min)0.07847696225152
Litres per second to Cubic yards per hour (l/s to yd3/h)4.7086177350915

Volume flow rate conversions