Litres per second (l/s) to Cubic kilometers per second (km3/s) conversion

Litres per second to Cubic kilometers per second conversion table

Litres per second (l/s)Cubic kilometers per second (km3/s)
00
11e-12
22e-12
33e-12
44e-12
55e-12
66e-12
77e-12
88e-12
99e-12
101e-11
202e-11
303e-11
404e-11
505e-11
606e-11
707e-11
808e-11
909e-11
1001e-10
10001e-9

How to convert litres per second to cubic kilometers per second?

To convert from litres per second (L/s) to cubic kilometers per second (km³/s), you need to understand the relationship between these units of volume.

1 liter (L) is equal to 10310^{-3} cubic meters (m³). 1 cubic meter (m³) is equal to 10910^{-9} cubic kilometers (km³).

So, when converting L/s to km³/s, you use the following conversions:

1 L=1 L×103 m3/L=103 m31 \text{ L} = 1 \text{ L} \times 10^{-3} \text{ m}^3/\text{L} = 10^{-3} \text{ m}^3 1 m3=109 km31 \text{ m}^3 = 10^{-9} \text{ km}^3

Then,

1 L/s=1×103 m3/s1 \text{ L/s} = 1 \times 10^{-3} \text{ m}^3/\text{s}

To convert cubic meters per second to cubic kilometers per second:

1 m3/s=109 km3/s1 \text{ m}^3/\text{s} = 10^{-9} \text{ km}^3/\text{s}

Therefore,

1 L/s=103 m3/s×109 km3/m3=1012 km3/s1 \text{ L/s} = 10^{-3} \text{ m}^3/\text{s} \times 10^{-9} \text{ km}^3/\text{m}^3 = 10^{-12} \text{ km}^3/\text{s}

So, 1 L/s is equal to 101210^{-12} km³/s.

Real-World Examples of Litres per Second

  1. Water Flow in Pipes:

    • A typical domestic shower has a water flow rate of about 10-15 L/s.
  2. Fire Hoses:

    • A standard fire hose can discharge water at rates between 20-40 L/s.
  3. River Discharge:

    • The average flow of the Amazon River is approximately 209,000 L/s (which is 209 m³/s).
  4. Pumping Stations:

    • Large municipal water pumps often operate at rates of about 200-300 L/s to supply water to urban areas.
  5. Wastewater Treatment Plants:

    • Many large-scale wastewater treatment plants can handle flow rates of several thousand L/s; for example, some can treat around 10,000 to 20,000 L/s.

By understanding these typical rates, you can get a sense of how substantial or minor a given flow rate might be in practical terms.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic kilometers per second to other unit conversions.

What is Litres per second?

Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.

Understanding Litres per Second

A litre is a metric unit of volume equal to 0.001 cubic meters (m3m^3). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.

The relationship can be expressed as:

1L/s=0.001m3/s1 \, \text{L/s} = 0.001 \, \text{m}^3\text{/s}

How Litres per Second is Formed

Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:

Volume Flow Rate (L/s)=Volume (L)Time (s)\text{Volume Flow Rate (L/s)} = \frac{\text{Volume (L)}}{\text{Time (s)}}

For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.

Applications and Examples

  • Household Water Usage: A typical shower might use water at a rate of 0.1 to 0.2 L/s.
  • River Discharge: Measuring the flow rate of rivers is crucial for water resource management and flood control. A small stream might have a flow rate of a few L/s, while a large river can have a flow rate of hundreds or thousands of cubic meters per second.
  • Medical Applications: In medical settings, IV drip rates or ventilator flow rates are often measured in millilitres per second (mL/s) or litres per minute (L/min), which can be easily converted to L/s. For example, a ventilator might deliver air at a rate of 1 L/s to a patient.
  • Industrial Processes: Many industrial processes involve controlling the flow of liquids or gases. For example, a chemical plant might use pumps to transfer liquids at a rate of several L/s.
  • Firefighting: Fire hoses deliver water at high flow rates to extinguish fires, often measured in L/s. A typical fire hose might deliver water at a rate of 15-20 L/s.

Relevant Laws and Principles

While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:

  • Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where:

    • AA is the cross-sectional area of the flow.
    • vv is the velocity of the fluid.
  • Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.

Interesting Facts

  • Understanding flow rates is essential in designing efficient plumbing systems, irrigation systems, and hydraulic systems.
  • Flow rate measurements are crucial for environmental monitoring, helping to assess water quality and track pollution.
  • The efficient management of water resources depends heavily on accurate measurement and control of flow rates.

For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.

What is Cubic Kilometers per Second?

Cubic kilometers per second (km3/skm^3/s) is a unit of flow rate, representing the volume of a substance that passes through a given area each second. It's an extremely large unit, suitable for measuring immense flows like those found in astrophysics or large-scale geological events.

How is it Formed?

The unit is derived from the standard units of volume and time:

  • Cubic kilometer (km3km^3): A unit of volume equal to a cube with sides of 1 kilometer (1000 meters) each.
  • Second (s): The base unit of time in the International System of Units (SI).

Combining these, 1km3/s1 \, km^3/s means that one cubic kilometer of substance flows past a point every second. This is a massive flow rate.

Understanding Flow Rate

The general formula for flow rate (Q) is:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the flow rate (in this case, km3/skm^3/s).
  • VV is the volume (in km3km^3).
  • tt is the time (in seconds).

Real-World Examples (Relatively Speaking)

Because km3/skm^3/s is such a large unit, direct, everyday examples are hard to come by. However, we can illustrate some uses and related concepts:

  • Astrophysics: In astrophysics, this unit might be relevant in describing the rate at which matter accretes onto a supermassive black hole. While individual stars and gas clouds are smaller, the overall accretion disk and the mass being consumed over time can result in extremely high volume flow rates if considered on a cosmic scale.

  • Glacial Calving: Large-scale glacial calving events, where massive chunks of ice break off glaciers, could be approximated using cubic kilometers and seconds (though these events are usually measured over minutes or hours). The rate at which ice volume is discharged into the ocean is crucial for understanding sea-level rise. Although, it is much more common to use cubic meters per second (m3/sm^3/s) when working with glacial calving events.

  • Geological Events: During catastrophic geological events, such as the draining of massive ice-dammed lakes, the flow rates can approach cubic kilometers per second. Although such events are very short lived.

Notable Associations

While no specific law or person is directly associated with the unit "cubic kilometers per second," understanding flow rates in general is fundamental to many scientific fields:

  • Fluid dynamics: This is the broader study of how fluids (liquids and gases) behave when in motion. The principles are used in engineering (designing pipelines, aircraft, etc.) and in environmental science (modeling river flows, ocean currents, etc.).

  • Hydrology: The study of the movement, distribution, and quality of water on Earth. Flow rate is a key parameter in understanding river discharge, groundwater flow, and other hydrological processes.

Complete Litres per second conversion table

Enter # of Litres per second
Convert 1 l/s to other unitsResult
Litres per second to Cubic Millimeters per second (l/s to mm3/s)1000000
Litres per second to Cubic Centimeters per second (l/s to cm3/s)1000
Litres per second to Cubic Decimeters per second (l/s to dm3/s)1
Litres per second to Cubic Decimeters per minute (l/s to dm3/min)60
Litres per second to Cubic Decimeters per hour (l/s to dm3/h)3600
Litres per second to Cubic Decimeters per day (l/s to dm3/d)86400
Litres per second to Cubic Decimeters per year (l/s to dm3/a)31557600
Litres per second to Millilitres per second (l/s to ml/s)1000
Litres per second to Centilitres per second (l/s to cl/s)100
Litres per second to Decilitres per second (l/s to dl/s)10
Litres per second to Litres per minute (l/s to l/min)60
Litres per second to Litres per hour (l/s to l/h)3600
Litres per second to Litres per day (l/s to l/d)86400
Litres per second to Litres per year (l/s to l/a)31557600
Litres per second to Kilolitres per second (l/s to kl/s)0.001
Litres per second to Kilolitres per minute (l/s to kl/min)0.06
Litres per second to Kilolitres per hour (l/s to kl/h)3.6
Litres per second to Cubic meters per second (l/s to m3/s)0.001
Litres per second to Cubic meters per minute (l/s to m3/min)0.06
Litres per second to Cubic meters per hour (l/s to m3/h)3.6
Litres per second to Cubic meters per day (l/s to m3/d)86.4
Litres per second to Cubic meters per year (l/s to m3/a)31557.6
Litres per second to Cubic kilometers per second (l/s to km3/s)1e-12
Litres per second to Teaspoons per second (l/s to tsp/s)202.8841362
Litres per second to Tablespoons per second (l/s to Tbs/s)67.6280454
Litres per second to Cubic inches per second (l/s to in3/s)61.024025374023
Litres per second to Cubic inches per minute (l/s to in3/min)3661.4415224414
Litres per second to Cubic inches per hour (l/s to in3/h)219686.49134648
Litres per second to Fluid Ounces per second (l/s to fl-oz/s)33.8140227
Litres per second to Fluid Ounces per minute (l/s to fl-oz/min)2028.841362
Litres per second to Fluid Ounces per hour (l/s to fl-oz/h)121730.48172
Litres per second to Cups per second (l/s to cup/s)4.2267528375
Litres per second to Pints per second (l/s to pnt/s)2.11337641875
Litres per second to Pints per minute (l/s to pnt/min)126.802585125
Litres per second to Pints per hour (l/s to pnt/h)7608.1551075
Litres per second to Quarts per second (l/s to qt/s)1.056688209375
Litres per second to Gallons per second (l/s to gal/s)0.2641720523438
Litres per second to Gallons per minute (l/s to gal/min)15.850323140625
Litres per second to Gallons per hour (l/s to gal/h)951.0193884375
Litres per second to Cubic feet per second (l/s to ft3/s)0.03531468492103
Litres per second to Cubic feet per minute (l/s to ft3/min)2.1188810952621
Litres per second to Cubic feet per hour (l/s to ft3/h)127.13286571572
Litres per second to Cubic yards per second (l/s to yd3/s)0.001307949370859
Litres per second to Cubic yards per minute (l/s to yd3/min)0.07847696225152
Litres per second to Cubic yards per hour (l/s to yd3/h)4.7086177350915

Volume flow rate conversions