Litres per second (l/s) to Fluid Ounces per hour (fl-oz/h) conversion

Litres per second to Fluid Ounces per hour conversion table

Litres per second (l/s)Fluid Ounces per hour (fl-oz/h)
00
1121730.48172
2243460.96344
3365191.44516
4486921.92688
5608652.4086
6730382.89032
7852113.37204
8973843.85376
91095574.33548
101217304.8172
202434609.6344
303651914.4516
404869219.2688
506086524.086
607303828.9032
708521133.7204
809738438.5376
9010955743.3548
10012173048.172
1000121730481.72

How to convert litres per second to fluid ounces per hour?

Sure, let's break down the conversion process first and then we can look at some real-world examples involving different quantities of litres per second (L/s).

Step-by-Step Conversion

  1. Conversion from Litres to Fluid Ounces:

    • There are 33.814 fluid ounces in 1 litre.
  2. Convert 1 Litre per Second to Fluid Ounces per Second:

    • 1 L/s×33.814 fl oz/L=33.814 fl oz/s1 \text{ L/s} \times 33.814 \text{ fl oz/L} = 33.814 \text{ fl oz/s}
  3. Convert from Seconds to Hours:

    • There are 3600 seconds in an hour.
  4. Convert 33.814 Fluid Ounces per Second to Fluid Ounces per Hour:

    • 33.814 fl oz/s×3600 s/hr=121,730.4 fl oz/hr33.814 \text{ fl oz/s} \times 3600 \text{ s/hr} = 121,730.4 \text{ fl oz/hr}

So, 1 litre per second is equal to 121,730.4 fluid ounces per hour.

Real-World Examples

  1. Household Water Use:

    • A standard kitchen faucet might flow at a rate of about 0.1 L/s. Using our conversion: 0.1 L/s×121,730.4 fl oz/hr per L/s=12,173.04 fl oz/hr0.1 \text{ L/s} \times 121,730.4 \text{ fl oz/hr per L/s} = 12,173.04 \text{ fl oz/hr}
  2. Fire Hose:

    • A typical fire hose might deliver around 30 L/s. Converting this: 30 L/s×121,730.4 fl oz/hr per L/s=3,651,912 fl oz/hr30 \text{ L/s} \times 121,730.4 \text{ fl oz/hr per L/s} = 3,651,912 \text{ fl oz/hr}
  3. Irrigation System:

    • An agricultural irrigation system might have a flow rate of 2 L/s. Converting this: 2 L/s×121,730.4 fl oz/hr per L/s=243,460.8 fl oz/hr2 \text{ L/s} \times 121,730.4 \text{ fl oz/hr per L/s} = 243,460.8 \text{ fl oz/hr}

By knowing how to convert litres per second to fluid ounces per hour, you can better understand and communicate flow rates in different units, which can be particularly useful in various fields such as engineering, agriculture, and household utilities.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Fluid Ounces per hour to other unit conversions.

What is Litres per second?

Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.

Understanding Litres per Second

A litre is a metric unit of volume equal to 0.001 cubic meters (m3m^3). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.

The relationship can be expressed as:

1L/s=0.001m3/s1 \, \text{L/s} = 0.001 \, \text{m}^3\text{/s}

How Litres per Second is Formed

Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:

Volume Flow Rate (L/s)=Volume (L)Time (s)\text{Volume Flow Rate (L/s)} = \frac{\text{Volume (L)}}{\text{Time (s)}}

For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.

Applications and Examples

  • Household Water Usage: A typical shower might use water at a rate of 0.1 to 0.2 L/s.
  • River Discharge: Measuring the flow rate of rivers is crucial for water resource management and flood control. A small stream might have a flow rate of a few L/s, while a large river can have a flow rate of hundreds or thousands of cubic meters per second.
  • Medical Applications: In medical settings, IV drip rates or ventilator flow rates are often measured in millilitres per second (mL/s) or litres per minute (L/min), which can be easily converted to L/s. For example, a ventilator might deliver air at a rate of 1 L/s to a patient.
  • Industrial Processes: Many industrial processes involve controlling the flow of liquids or gases. For example, a chemical plant might use pumps to transfer liquids at a rate of several L/s.
  • Firefighting: Fire hoses deliver water at high flow rates to extinguish fires, often measured in L/s. A typical fire hose might deliver water at a rate of 15-20 L/s.

Relevant Laws and Principles

While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:

  • Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where:

    • AA is the cross-sectional area of the flow.
    • vv is the velocity of the fluid.
  • Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.

Interesting Facts

  • Understanding flow rates is essential in designing efficient plumbing systems, irrigation systems, and hydraulic systems.
  • Flow rate measurements are crucial for environmental monitoring, helping to assess water quality and track pollution.
  • The efficient management of water resources depends heavily on accurate measurement and control of flow rates.

For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.

What is fluid ounces per hour?

Fluid Ounces per hour is a unit used to measure the rate at which a volume of fluid passes through a specific point over a period of time. Below is more detailed explanation.

Understanding Fluid Ounces per Hour

Fluid Ounces per Hour (fl oz/hr) is a unit of volume flow rate. It indicates the volume of fluid, measured in fluid ounces, that passes a certain point in one hour. This unit is commonly used in various applications, including:

  • Medical: Intravenous (IV) drip rates
  • HVAC: Condensate drainage
  • Cooking: Dispensing ingredients.
  • Manufacturing: Measuring small flow rates of liquids in chemical processes.

How Fluid Ounces per Hour is Formed

The unit is formed by dividing a volume measurement (fluid ounces) by a time measurement (hours).

  • Fluid Ounce (fl oz): A unit of volume in the imperial and US customary systems. There are different definitions for fluid ounces (US and Imperial), but we will stick to the US fluid ounce for simplicity. 1 US fluid ounce is approximately equal to 29.5735 milliliters.
  • Hour (hr): A unit of time equal to 60 minutes or 3600 seconds.

Thus, 1 fl oz/hr means that 1 fluid ounce of a substance flows past a point in one hour.

Formula for Volume Flow Rate

The volume flow rate QQ can be calculated using the following formula:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volume flow rate (fl oz/hr)
  • VV = Volume (fluid ounces)
  • tt = Time (hours)

Real-World Examples of Fluid Ounces per Hour

Here are some examples to illustrate the use of fluid ounces per hour:

  1. Medical IV Drip: A doctor might prescribe an IV drip at a rate of 4 fl oz/hr to administer medication or fluids to a patient.

  2. Condensate Drainage: An air conditioner might produce condensate at a rate of 0.5 fl oz/hr on a humid day.

  3. Small Scale Chemical Experiment: A chemistry experiment that requires adding reagent at the rate of 0.1 fl oz/hr

Interesting Facts and People

While there isn't a specific law or person directly associated with "Fluid Ounces per hour," the study of fluid dynamics, which includes flow rates, is deeply rooted in physics and engineering. Notable figures who have contributed significantly to our understanding of fluid dynamics include:

  • Daniel Bernoulli: Known for Bernoulli's principle, which relates fluid speed to pressure.
  • Osborne Reynolds: Famous for the Reynolds number, which helps predict flow patterns in fluids.
  • Gaspard-Gustave Coriolis: Known for Coriolis force.

For a more in-depth understanding of fluid dynamics and flow rates, resources like Khan Academy's Fluid Mechanics or engineering textbooks on fluid mechanics can be helpful.

Complete Litres per second conversion table

Enter # of Litres per second
Convert 1 l/s to other unitsResult
Litres per second to Cubic Millimeters per second (l/s to mm3/s)1000000
Litres per second to Cubic Centimeters per second (l/s to cm3/s)1000
Litres per second to Cubic Decimeters per second (l/s to dm3/s)1
Litres per second to Cubic Decimeters per minute (l/s to dm3/min)60
Litres per second to Cubic Decimeters per hour (l/s to dm3/h)3600
Litres per second to Cubic Decimeters per day (l/s to dm3/d)86400
Litres per second to Cubic Decimeters per year (l/s to dm3/a)31557600
Litres per second to Millilitres per second (l/s to ml/s)1000
Litres per second to Centilitres per second (l/s to cl/s)100
Litres per second to Decilitres per second (l/s to dl/s)10
Litres per second to Litres per minute (l/s to l/min)60
Litres per second to Litres per hour (l/s to l/h)3600
Litres per second to Litres per day (l/s to l/d)86400
Litres per second to Litres per year (l/s to l/a)31557600
Litres per second to Kilolitres per second (l/s to kl/s)0.001
Litres per second to Kilolitres per minute (l/s to kl/min)0.06
Litres per second to Kilolitres per hour (l/s to kl/h)3.6
Litres per second to Cubic meters per second (l/s to m3/s)0.001
Litres per second to Cubic meters per minute (l/s to m3/min)0.06
Litres per second to Cubic meters per hour (l/s to m3/h)3.6
Litres per second to Cubic meters per day (l/s to m3/d)86.4
Litres per second to Cubic meters per year (l/s to m3/a)31557.6
Litres per second to Cubic kilometers per second (l/s to km3/s)1e-12
Litres per second to Teaspoons per second (l/s to tsp/s)202.8841362
Litres per second to Tablespoons per second (l/s to Tbs/s)67.6280454
Litres per second to Cubic inches per second (l/s to in3/s)61.024025374023
Litres per second to Cubic inches per minute (l/s to in3/min)3661.4415224414
Litres per second to Cubic inches per hour (l/s to in3/h)219686.49134648
Litres per second to Fluid Ounces per second (l/s to fl-oz/s)33.8140227
Litres per second to Fluid Ounces per minute (l/s to fl-oz/min)2028.841362
Litres per second to Fluid Ounces per hour (l/s to fl-oz/h)121730.48172
Litres per second to Cups per second (l/s to cup/s)4.2267528375
Litres per second to Pints per second (l/s to pnt/s)2.11337641875
Litres per second to Pints per minute (l/s to pnt/min)126.802585125
Litres per second to Pints per hour (l/s to pnt/h)7608.1551075
Litres per second to Quarts per second (l/s to qt/s)1.056688209375
Litres per second to Gallons per second (l/s to gal/s)0.2641720523438
Litres per second to Gallons per minute (l/s to gal/min)15.850323140625
Litres per second to Gallons per hour (l/s to gal/h)951.0193884375
Litres per second to Cubic feet per second (l/s to ft3/s)0.03531468492103
Litres per second to Cubic feet per minute (l/s to ft3/min)2.1188810952621
Litres per second to Cubic feet per hour (l/s to ft3/h)127.13286571572
Litres per second to Cubic yards per second (l/s to yd3/s)0.001307949370859
Litres per second to Cubic yards per minute (l/s to yd3/min)0.07847696225152
Litres per second to Cubic yards per hour (l/s to yd3/h)4.7086177350915

Volume flow rate conversions