Litres per second (l/s) to Pints per second (pnt/s) conversion

Litres per second to Pints per second conversion table

Litres per second (l/s)Pints per second (pnt/s)
00
12.11337641875
24.2267528375
36.34012925625
48.453505675
510.56688209375
612.6802585125
714.79363493125
816.90701135
919.02038776875
1021.1337641875
2042.267528375
3063.4012925625
4084.53505675
50105.6688209375
60126.802585125
70147.9363493125
80169.0701135
90190.2038776875
100211.337641875
10002113.37641875

How to convert litres per second to pints per second?

To convert litres per second to pints per second, we need to know the conversion factor between litres and pints. There are different types of pints used in different countries (e.g., the US liquid pint and the UK imperial pint), so let's look at both:

  • 1 litre = 2.11338 US liquid pints
  • 1 litre = 1.75975 UK imperial pints

Conversion Process

For US Liquid Pints:

1 litre per second (L/s) * 2.11338 US pints per litre = 2.11338 US pints per second (pints/s).

For UK Imperial Pints:

1 litre per second (L/s) * 1.75975 UK pints per litre = 1.75975 UK pints per second (pints/s).

Real-World Examples

Here are some real-world scenarios for other quantities of litres per second:

  1. Fire Hose Output: Fire hoses typically discharge water at a rate of around 100-200 litres per minute, which converts to approximately 1.67-3.33 litres per second.

  2. Household Faucet: A typical household faucet might dispense water at a rate of about 6-15 litres per minute, or 0.1-0.25 litres per second.

  3. Aquarium Water Pump: Small aquarium pumps might have a flow rate of around 10-50 litres per hour, which is approximately 0.00278-0.0139 litres per second.

  4. River Flow Rates: Small rivers might have flow rates in the range of 1,000-10,000 litres per second, while larger rivers like the Amazon can have flow rates exceeding 200,000 litres per second.

  5. Industrial Processes: Certain industrial processes might require large quantities of liquid to be moved quickly, with flow rates often in the range of hundreds to thousands of litres per second.

By understanding these examples, one can appreciate the wide range of applications and flow rates measured in litres per second.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Pints per second to other unit conversions.

What is Litres per second?

Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.

Understanding Litres per Second

A litre is a metric unit of volume equal to 0.001 cubic meters (m3m^3). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.

The relationship can be expressed as:

1L/s=0.001m3/s1 \, \text{L/s} = 0.001 \, \text{m}^3\text{/s}

How Litres per Second is Formed

Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:

Volume Flow Rate (L/s)=Volume (L)Time (s)\text{Volume Flow Rate (L/s)} = \frac{\text{Volume (L)}}{\text{Time (s)}}

For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.

Applications and Examples

  • Household Water Usage: A typical shower might use water at a rate of 0.1 to 0.2 L/s.
  • River Discharge: Measuring the flow rate of rivers is crucial for water resource management and flood control. A small stream might have a flow rate of a few L/s, while a large river can have a flow rate of hundreds or thousands of cubic meters per second.
  • Medical Applications: In medical settings, IV drip rates or ventilator flow rates are often measured in millilitres per second (mL/s) or litres per minute (L/min), which can be easily converted to L/s. For example, a ventilator might deliver air at a rate of 1 L/s to a patient.
  • Industrial Processes: Many industrial processes involve controlling the flow of liquids or gases. For example, a chemical plant might use pumps to transfer liquids at a rate of several L/s.
  • Firefighting: Fire hoses deliver water at high flow rates to extinguish fires, often measured in L/s. A typical fire hose might deliver water at a rate of 15-20 L/s.

Relevant Laws and Principles

While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:

  • Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where:

    • AA is the cross-sectional area of the flow.
    • vv is the velocity of the fluid.
  • Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.

Interesting Facts

  • Understanding flow rates is essential in designing efficient plumbing systems, irrigation systems, and hydraulic systems.
  • Flow rate measurements are crucial for environmental monitoring, helping to assess water quality and track pollution.
  • The efficient management of water resources depends heavily on accurate measurement and control of flow rates.

For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.

What is pints per second?

Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.

Understanding Pints per Second

Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.

Formation of the Unit

The unit is derived from two base units:

  • Pint (pint): A unit of volume. In the US system, there are both liquid and dry pints. Here, we refer to liquid pints.
  • Second (s): A unit of time.

Combining these, we get pints per second (pint/s), representing volume per unit time.

Formula and Calculation

Flow rate (QQ) is generally calculated as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the flow rate (in pints per second)
  • VV is the volume (in pints)
  • tt is the time (in seconds)

Real-World Examples & Conversions

While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:

  • Dosing Pumps: Small dosing pumps used in chemical processing or water treatment might operate at flow rates measurable in pints per second.
  • Small Streams/Waterfalls: The flow rate of a small stream or the outflow of a small waterfall could be estimated in pints per second.

Conversions to other common units:

  • 1 pint/s = 0.125 gallons/s
  • 1 pint/s = 7.48 gallons/minute
  • 1 pint/s = 0.473 liters/s
  • 1 pint/s = 473.176 milliliters/s

Related Concepts and Applications

While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:

  • Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.

  • Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density ρ\rho, the volumetric flow rate QQ is constant. Mathematically, this can be expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where AA is the cross-sectional area of the flow and vv is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in m3/sm^3/s or pint/spint/s.

  • Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.

    Q=πr4ΔP8ηLQ = \frac{\pi r^4 \Delta P}{8 \eta L}

    Where:

    • QQ is the volumetric flow rate (e.g., in m3/sm^3/s).
    • rr is the radius of the pipe.
    • ΔP\Delta P is the pressure difference between the ends of the pipe.
    • η\eta is the dynamic viscosity of the fluid.
    • LL is the length of the pipe.

Complete Litres per second conversion table

Enter # of Litres per second
Convert 1 l/s to other unitsResult
Litres per second to Cubic Millimeters per second (l/s to mm3/s)1000000
Litres per second to Cubic Centimeters per second (l/s to cm3/s)1000
Litres per second to Cubic Decimeters per second (l/s to dm3/s)1
Litres per second to Cubic Decimeters per minute (l/s to dm3/min)60
Litres per second to Cubic Decimeters per hour (l/s to dm3/h)3600
Litres per second to Cubic Decimeters per day (l/s to dm3/d)86400
Litres per second to Cubic Decimeters per year (l/s to dm3/a)31557600
Litres per second to Millilitres per second (l/s to ml/s)1000
Litres per second to Centilitres per second (l/s to cl/s)100
Litres per second to Decilitres per second (l/s to dl/s)10
Litres per second to Litres per minute (l/s to l/min)60
Litres per second to Litres per hour (l/s to l/h)3600
Litres per second to Litres per day (l/s to l/d)86400
Litres per second to Litres per year (l/s to l/a)31557600
Litres per second to Kilolitres per second (l/s to kl/s)0.001
Litres per second to Kilolitres per minute (l/s to kl/min)0.06
Litres per second to Kilolitres per hour (l/s to kl/h)3.6
Litres per second to Cubic meters per second (l/s to m3/s)0.001
Litres per second to Cubic meters per minute (l/s to m3/min)0.06
Litres per second to Cubic meters per hour (l/s to m3/h)3.6
Litres per second to Cubic meters per day (l/s to m3/d)86.4
Litres per second to Cubic meters per year (l/s to m3/a)31557.6
Litres per second to Cubic kilometers per second (l/s to km3/s)1e-12
Litres per second to Teaspoons per second (l/s to tsp/s)202.8841362
Litres per second to Tablespoons per second (l/s to Tbs/s)67.6280454
Litres per second to Cubic inches per second (l/s to in3/s)61.024025374023
Litres per second to Cubic inches per minute (l/s to in3/min)3661.4415224414
Litres per second to Cubic inches per hour (l/s to in3/h)219686.49134648
Litres per second to Fluid Ounces per second (l/s to fl-oz/s)33.8140227
Litres per second to Fluid Ounces per minute (l/s to fl-oz/min)2028.841362
Litres per second to Fluid Ounces per hour (l/s to fl-oz/h)121730.48172
Litres per second to Cups per second (l/s to cup/s)4.2267528375
Litres per second to Pints per second (l/s to pnt/s)2.11337641875
Litres per second to Pints per minute (l/s to pnt/min)126.802585125
Litres per second to Pints per hour (l/s to pnt/h)7608.1551075
Litres per second to Quarts per second (l/s to qt/s)1.056688209375
Litres per second to Gallons per second (l/s to gal/s)0.2641720523438
Litres per second to Gallons per minute (l/s to gal/min)15.850323140625
Litres per second to Gallons per hour (l/s to gal/h)951.0193884375
Litres per second to Cubic feet per second (l/s to ft3/s)0.03531468492103
Litres per second to Cubic feet per minute (l/s to ft3/min)2.1188810952621
Litres per second to Cubic feet per hour (l/s to ft3/h)127.13286571572
Litres per second to Cubic yards per second (l/s to yd3/s)0.001307949370859
Litres per second to Cubic yards per minute (l/s to yd3/min)0.07847696225152
Litres per second to Cubic yards per hour (l/s to yd3/h)4.7086177350915

Volume flow rate conversions