Pints per second (pnt/s) | Cubic Decimeters per year (dm3/a) |
---|---|
0 | 0 |
1 | 14932313.865159 |
2 | 29864627.730317 |
3 | 44796941.595476 |
4 | 59729255.460635 |
5 | 74661569.325793 |
6 | 89593883.190952 |
7 | 104526197.05611 |
8 | 119458510.92127 |
9 | 134390824.78643 |
10 | 149323138.65159 |
20 | 298646277.30317 |
30 | 447969415.95476 |
40 | 597292554.60635 |
50 | 746615693.25793 |
60 | 895938831.90952 |
70 | 1045261970.5611 |
80 | 1194585109.2127 |
90 | 1343908247.8643 |
100 | 1493231386.5159 |
1000 | 14932313865.159 |
1 Pints per second (pnt/s) is equal to 14932313.865159 Cubic Decimeters per year (dm3/a).
1 pnt/s = 14932313.865159 dm3/a
or
1 dm3/a = 6.6968857541448e-8 pnt/s
Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.
Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.
The unit is derived from two base units:
Combining these, we get pints per second (pint/s), representing volume per unit time.
Flow rate () is generally calculated as:
Where:
While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:
Conversions to other common units:
While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:
Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.
Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density , the volumetric flow rate is constant. Mathematically, this can be expressed as:
Where is the cross-sectional area of the flow and is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in or .
Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.
Where:
Cubic decimeters per year () is a unit of volumetric flow rate, representing the volume of a substance that passes through a given area per year. Let's break down its meaning and explore some related concepts.
A cubic decimeter per year () measures the volume of a substance (liquid, gas, or solid) that flows or is produced over a period of one year, with the volume measured in cubic decimeters. A cubic decimeter is equivalent to one liter.
It's formed by combining a unit of volume (cubic decimeter) with a unit of time (year). This creates a rate that describes how much volume is transferred or produced during that specific time period.
While not as commonly used as other flow rate units like cubic meters per second () or liters per minute (), cubic decimeters per year can be useful in specific contexts where small volumes or long timescales are involved.
Environmental Science: Measuring the annual rate of groundwater recharge in a small aquifer. For example, if an aquifer recharges at a rate of , it means 500 liters of water are added to the aquifer each year.
Chemical Processes: Assessing the annual production rate of a chemical substance in a small-scale reaction. If a reaction produces of a specific compound, it indicates the amount of the compound created annually.
Leakage/Seepage: Estimating the annual leakage of fluid from a container or reservoir. If a tank leaks at a rate of , it shows the annual loss of fluid.
Slow biological Processes: For instance, the growth rate of certain organisms in terms of volume increase per year.
To convert from to other units, you'll need conversion factors for both volume and time. Here are a couple of common conversions:
To liters per day ():
To cubic meters per second ():
Volumetric flow rate () is the volume of fluid that passes through a given cross-sectional area per unit time. The general formula for volumetric flow rate is:
Where:
Convert 1 pnt/s to other units | Result |
---|---|
Pints per second to Cubic Millimeters per second (pnt/s to mm3/s) | 473176.47302579 |
Pints per second to Cubic Centimeters per second (pnt/s to cm3/s) | 473.17647302579 |
Pints per second to Cubic Decimeters per second (pnt/s to dm3/s) | 0.4731764730258 |
Pints per second to Cubic Decimeters per minute (pnt/s to dm3/min) | 28.390588381547 |
Pints per second to Cubic Decimeters per hour (pnt/s to dm3/h) | 1703.4353028928 |
Pints per second to Cubic Decimeters per day (pnt/s to dm3/d) | 40882.447269428 |
Pints per second to Cubic Decimeters per year (pnt/s to dm3/a) | 14932313.865159 |
Pints per second to Millilitres per second (pnt/s to ml/s) | 473.17647302579 |
Pints per second to Centilitres per second (pnt/s to cl/s) | 47.317647302579 |
Pints per second to Decilitres per second (pnt/s to dl/s) | 4.7317647302579 |
Pints per second to Litres per second (pnt/s to l/s) | 0.4731764730258 |
Pints per second to Litres per minute (pnt/s to l/min) | 28.390588381547 |
Pints per second to Litres per hour (pnt/s to l/h) | 1703.4353028928 |
Pints per second to Litres per day (pnt/s to l/d) | 40882.447269428 |
Pints per second to Litres per year (pnt/s to l/a) | 14932313.865159 |
Pints per second to Kilolitres per second (pnt/s to kl/s) | 0.0004731764730258 |
Pints per second to Kilolitres per minute (pnt/s to kl/min) | 0.02839058838155 |
Pints per second to Kilolitres per hour (pnt/s to kl/h) | 1.7034353028928 |
Pints per second to Cubic meters per second (pnt/s to m3/s) | 0.0004731764730258 |
Pints per second to Cubic meters per minute (pnt/s to m3/min) | 0.02839058838155 |
Pints per second to Cubic meters per hour (pnt/s to m3/h) | 1.7034353028928 |
Pints per second to Cubic meters per day (pnt/s to m3/d) | 40.882447269428 |
Pints per second to Cubic meters per year (pnt/s to m3/a) | 14932.313865159 |
Pints per second to Cubic kilometers per second (pnt/s to km3/s) | 4.7317647302579e-13 |
Pints per second to Teaspoons per second (pnt/s to tsp/s) | 96 |
Pints per second to Tablespoons per second (pnt/s to Tbs/s) | 32 |
Pints per second to Cubic inches per second (pnt/s to in3/s) | 28.875133096317 |
Pints per second to Cubic inches per minute (pnt/s to in3/min) | 1732.507985779 |
Pints per second to Cubic inches per hour (pnt/s to in3/h) | 103950.47914674 |
Pints per second to Fluid Ounces per second (pnt/s to fl-oz/s) | 16 |
Pints per second to Fluid Ounces per minute (pnt/s to fl-oz/min) | 960 |
Pints per second to Fluid Ounces per hour (pnt/s to fl-oz/h) | 57600 |
Pints per second to Cups per second (pnt/s to cup/s) | 2 |
Pints per second to Pints per minute (pnt/s to pnt/min) | 60 |
Pints per second to Pints per hour (pnt/s to pnt/h) | 3600 |
Pints per second to Quarts per second (pnt/s to qt/s) | 0.5 |
Pints per second to Gallons per second (pnt/s to gal/s) | 0.125 |
Pints per second to Gallons per minute (pnt/s to gal/min) | 7.5 |
Pints per second to Gallons per hour (pnt/s to gal/h) | 450 |
Pints per second to Cubic feet per second (pnt/s to ft3/s) | 0.01671007805695 |
Pints per second to Cubic feet per minute (pnt/s to ft3/min) | 1.0026046834171 |
Pints per second to Cubic feet per hour (pnt/s to ft3/h) | 60.156281005028 |
Pints per second to Cubic yards per second (pnt/s to yd3/s) | 0.0006188908701992 |
Pints per second to Cubic yards per minute (pnt/s to yd3/min) | 0.03713345221195 |
Pints per second to Cubic yards per hour (pnt/s to yd3/h) | 2.2280071327173 |