Pints per second (pnt/s) to Kilolitres per hour (kl/h) conversion

Pints per second to Kilolitres per hour conversion table

Pints per second (pnt/s)Kilolitres per hour (kl/h)
00
11.7034353028928
23.4068706057857
35.1103059086785
46.8137412115714
58.5171765144642
610.220611817357
711.92404712025
813.627482423143
915.330917726036
1017.034353028928
2034.068706057857
3051.103059086785
4068.137412115714
5085.171765144642
60102.20611817357
70119.2404712025
80136.27482423143
90153.30917726036
100170.34353028928
10001703.4353028928

How to convert pints per second to kilolitres per hour?

Sure, let's break down the conversion steps and then look at some real-world examples for context.

Conversion Steps:

  1. Convert Pints to Liters:

    • 1 US pint is equal to approximately 0.473176 liters.
    • 1 UK pint is equal to approximately 0.568261 liters. For this conversion, let's use the US pint to liters. If you're using UK measurements, you'll need to adjust accordingly.
  2. Convert Liters per Second to Liters per Hour:

    • There are 3600 seconds in one hour.
  3. Convert Liters to Kiloliters:

    • 1 kiloliter (kL) is equal to 1000 liters (L).

Let's go through these steps for converting 1 US pint per second to kiloliters per hour.

Step-by-Step Conversion:

  1. Convert Pints to Liters: 1 pint/second×0.473176 liters/pint=0.473176 liters/second 1 \text{ pint/second} \times 0.473176 \text{ liters/pint} = 0.473176 \text{ liters/second}

  2. Convert Liters per Second to Liters per Hour: 0.473176 liters/second×3600 seconds/hour=1703.4336 liters/hour 0.473176 \text{ liters/second} \times 3600 \text{ seconds/hour} = 1703.4336 \text{ liters/hour}

  3. Convert Liters to Kiloliters: 1703.4336 liters/hour÷1000=1.7034336 kiloliters/hour 1703.4336 \text{ liters/hour} \div 1000 = 1.7034336 \text{ kiloliters/hour}

So, 1 US pint per second is approximately equal to 1.703 kiloliters per hour.

Real-World Examples:

Here are some practical examples of different quantities of pints per second and their use cases:

  1. Water Flow in Residential Plumbing:

    • A typical faucet might have a flow rate of around 2 gallons per minute, which is approximately 0.066 US pints per second.
  2. Irrigation Systems:

    • A large commercial irrigation sprinkler may output around 10 US pints per second, making it suitable for covering large fields.
  3. Firefighting Hoses:

    • A fire hose might deliver around 25 US pints per second to effectively tackle large blazes.
  4. Industrial Chemical Processing:

    • Some industrial processes might involve moving fluids at rates of 50-100 US pints per second, depending on the scale and requirements.
  5. Beverage Dispensing:

    • In a brewery, beer might be dispensed at rates around 0.2-0.5 US pints per second during bottling operations.

These examples give a sense of the range of applications in which different flow rates might be relevant, from simple household fixtures to complex industrial systems.

See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Kilolitres per hour to other unit conversions.

What is pints per second?

Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.

Understanding Pints per Second

Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.

Formation of the Unit

The unit is derived from two base units:

  • Pint (pint): A unit of volume. In the US system, there are both liquid and dry pints. Here, we refer to liquid pints.
  • Second (s): A unit of time.

Combining these, we get pints per second (pint/s), representing volume per unit time.

Formula and Calculation

Flow rate (QQ) is generally calculated as:

Q=VtQ = \frac{V}{t}

Where:

  • QQ is the flow rate (in pints per second)
  • VV is the volume (in pints)
  • tt is the time (in seconds)

Real-World Examples & Conversions

While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:

  • Dosing Pumps: Small dosing pumps used in chemical processing or water treatment might operate at flow rates measurable in pints per second.
  • Small Streams/Waterfalls: The flow rate of a small stream or the outflow of a small waterfall could be estimated in pints per second.

Conversions to other common units:

  • 1 pint/s = 0.125 gallons/s
  • 1 pint/s = 7.48 gallons/minute
  • 1 pint/s = 0.473 liters/s
  • 1 pint/s = 473.176 milliliters/s

Related Concepts and Applications

While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:

  • Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.

  • Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density ρ\rho, the volumetric flow rate QQ is constant. Mathematically, this can be expressed as:

    A1v1=A2v2A_1v_1 = A_2v_2

    Where AA is the cross-sectional area of the flow and vv is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in m3/sm^3/s or pint/spint/s.

  • Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.

    Q=πr4ΔP8ηLQ = \frac{\pi r^4 \Delta P}{8 \eta L}

    Where:

    • QQ is the volumetric flow rate (e.g., in m3/sm^3/s).
    • rr is the radius of the pipe.
    • ΔP\Delta P is the pressure difference between the ends of the pipe.
    • η\eta is the dynamic viscosity of the fluid.
    • LL is the length of the pipe.

What is Kilolitres per hour?

This section provides a detailed explanation of Kilolitres per hour (kL/h), a unit of volume flow rate. We'll explore its definition, how it's formed, its applications, and provide real-world examples to enhance your understanding.

Definition of Kilolitres per hour (kL/h)

Kilolitres per hour (kL/h) is a unit of measurement used to quantify the volume of fluid that passes through a specific point in a given time, expressed in hours. One kilolitre is equal to 1000 litres. Therefore, one kL/h represents the flow of 1000 litres of a substance every hour. This is commonly used in industries involving large volumes of liquids.

Formation and Derivation

kL/h is a derived unit, meaning it's formed from base units. In this case, it combines the metric unit of volume (litre, L) with the unit of time (hour, h). The "kilo" prefix denotes a factor of 1000.

  • 1 Kilolitre (kL) = 1000 Litres (L)

To convert other volume flow rate units to kL/h, use the appropriate conversion factors. For example:

  • Cubic meters per hour (m3/hm^3/h) to kL/h: 1 m3/hm^3/h = 1 kL/h
  • Litres per minute (L/min) to kL/h: 1 L/min = 0.06 kL/h

The conversion formula is:

Flow Rate (kL/h)=Flow Rate (Original Unit)×Conversion Factor\text{Flow Rate (kL/h)} = \text{Flow Rate (Original Unit)} \times \text{Conversion Factor}

Applications and Real-World Examples

Kilolitres per hour is used in various fields to measure the flow of liquids. Here are some examples:

  • Water Treatment Plants: Measuring the amount of water being processed and distributed per hour. For example, a water treatment plant might process 500 kL/h to meet the demands of a small town.

  • Industrial Processes: In chemical plants or manufacturing facilities, kL/h can measure the flow rate of raw materials or finished products. Example, a chemical plant might use 120 kL/h of water for cooling processes.

  • Irrigation Systems: Large-scale agricultural operations use kL/h to monitor the amount of water being delivered to fields. Example, a large farm may irrigate at a rate of 30 kL/h to ensure optimal crop hydration.

  • Fuel Consumption: While often measured in litres, the flow rate of fuel in large engines or industrial boilers can be quantified in kL/h. Example, a big diesel power plant might burn diesel at 1.5 kL/h to generate electricity.

  • Wine Production: Wineries can use kL/h to measure the flow of wine being pumped from fermentation tanks into holding tanks or bottling lines. Example, a winery could be pumping wine at 5 kL/h during bottling.

Flow Rate Equation

Flow rate is generally defined as the volume of fluid that passes through a given area per unit time. The following formula describes it:

Q=VtQ = \frac{V}{t}

Where:

  • QQ = Volume flow rate
  • VV = Volume of fluid
  • tt = Time

Interesting Facts and Related Concepts

While no specific law is directly named after kL/h, the concept of flow rate is integral to fluid dynamics, which has contributed to the development of various scientific principles.

  • Bernoulli's Principle: Describes the relationship between the speed of a fluid, its pressure, and its height.
  • Hagen-Poiseuille Equation: Describes the pressure drop of an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe.

For more information on flow rate and related concepts, refer to Fluid Dynamics.

Complete Pints per second conversion table

Enter # of Pints per second
Convert 1 pnt/s to other unitsResult
Pints per second to Cubic Millimeters per second (pnt/s to mm3/s)473176.47302579
Pints per second to Cubic Centimeters per second (pnt/s to cm3/s)473.17647302579
Pints per second to Cubic Decimeters per second (pnt/s to dm3/s)0.4731764730258
Pints per second to Cubic Decimeters per minute (pnt/s to dm3/min)28.390588381547
Pints per second to Cubic Decimeters per hour (pnt/s to dm3/h)1703.4353028928
Pints per second to Cubic Decimeters per day (pnt/s to dm3/d)40882.447269428
Pints per second to Cubic Decimeters per year (pnt/s to dm3/a)14932313.865159
Pints per second to Millilitres per second (pnt/s to ml/s)473.17647302579
Pints per second to Centilitres per second (pnt/s to cl/s)47.317647302579
Pints per second to Decilitres per second (pnt/s to dl/s)4.7317647302579
Pints per second to Litres per second (pnt/s to l/s)0.4731764730258
Pints per second to Litres per minute (pnt/s to l/min)28.390588381547
Pints per second to Litres per hour (pnt/s to l/h)1703.4353028928
Pints per second to Litres per day (pnt/s to l/d)40882.447269428
Pints per second to Litres per year (pnt/s to l/a)14932313.865159
Pints per second to Kilolitres per second (pnt/s to kl/s)0.0004731764730258
Pints per second to Kilolitres per minute (pnt/s to kl/min)0.02839058838155
Pints per second to Kilolitres per hour (pnt/s to kl/h)1.7034353028928
Pints per second to Cubic meters per second (pnt/s to m3/s)0.0004731764730258
Pints per second to Cubic meters per minute (pnt/s to m3/min)0.02839058838155
Pints per second to Cubic meters per hour (pnt/s to m3/h)1.7034353028928
Pints per second to Cubic meters per day (pnt/s to m3/d)40.882447269428
Pints per second to Cubic meters per year (pnt/s to m3/a)14932.313865159
Pints per second to Cubic kilometers per second (pnt/s to km3/s)4.7317647302579e-13
Pints per second to Teaspoons per second (pnt/s to tsp/s)96
Pints per second to Tablespoons per second (pnt/s to Tbs/s)32
Pints per second to Cubic inches per second (pnt/s to in3/s)28.875133096317
Pints per second to Cubic inches per minute (pnt/s to in3/min)1732.507985779
Pints per second to Cubic inches per hour (pnt/s to in3/h)103950.47914674
Pints per second to Fluid Ounces per second (pnt/s to fl-oz/s)16
Pints per second to Fluid Ounces per minute (pnt/s to fl-oz/min)960
Pints per second to Fluid Ounces per hour (pnt/s to fl-oz/h)57600
Pints per second to Cups per second (pnt/s to cup/s)2
Pints per second to Pints per minute (pnt/s to pnt/min)60
Pints per second to Pints per hour (pnt/s to pnt/h)3600
Pints per second to Quarts per second (pnt/s to qt/s)0.5
Pints per second to Gallons per second (pnt/s to gal/s)0.125
Pints per second to Gallons per minute (pnt/s to gal/min)7.5
Pints per second to Gallons per hour (pnt/s to gal/h)450
Pints per second to Cubic feet per second (pnt/s to ft3/s)0.01671007805695
Pints per second to Cubic feet per minute (pnt/s to ft3/min)1.0026046834171
Pints per second to Cubic feet per hour (pnt/s to ft3/h)60.156281005028
Pints per second to Cubic yards per second (pnt/s to yd3/s)0.0006188908701992
Pints per second to Cubic yards per minute (pnt/s to yd3/min)0.03713345221195
Pints per second to Cubic yards per hour (pnt/s to yd3/h)2.2280071327173

Volume flow rate conversions