Pints per second (pnt/s) | Litres per second (l/s) |
---|---|
0 | 0 |
1 | 0.4731764730258 |
2 | 0.9463529460516 |
3 | 1.4195294190774 |
4 | 1.8927058921032 |
5 | 2.3658823651289 |
6 | 2.8390588381547 |
7 | 3.3122353111805 |
8 | 3.7854117842063 |
9 | 4.2585882572321 |
10 | 4.7317647302579 |
20 | 9.4635294605158 |
30 | 14.195294190774 |
40 | 18.927058921032 |
50 | 23.658823651289 |
60 | 28.390588381547 |
70 | 33.122353111805 |
80 | 37.854117842063 |
90 | 42.585882572321 |
100 | 47.317647302579 |
1000 | 473.17647302579 |
To convert from pints per second to liters per second, you'll need to use the conversion factors for pints to liters.
1 US pint is equivalent to approximately 0.473176 liters. Therefore, to convert pints per second to liters per second, you multiply by 0.473176.
Here’s the formula for the conversion:
So, is equal to .
Household Plumbing:
Industrial Water Usage:
Dairy Farm Milking Machine:
These examples demonstrate the concept of converting pints per second to liters per second in practical scenarios.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Litres per second to other unit conversions.
Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.
Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.
The unit is derived from two base units:
Combining these, we get pints per second (pint/s), representing volume per unit time.
Flow rate () is generally calculated as:
Where:
While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:
Conversions to other common units:
While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:
Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.
Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density , the volumetric flow rate is constant. Mathematically, this can be expressed as:
Where is the cross-sectional area of the flow and is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in or .
Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.
Where:
Litres per second (L/s) is a unit used to measure volume flow rate, indicating the volume of liquid or gas that passes through a specific point in one second. It is a common unit in various fields, particularly in engineering, hydrology, and medicine, where measuring fluid flow is crucial.
A litre is a metric unit of volume equal to 0.001 cubic meters (). Therefore, one litre per second represents 0.001 cubic meters of fluid passing a point every second.
The relationship can be expressed as:
Litres per second is derived by dividing a volume measured in litres by a time measured in seconds:
For example, if 5 litres of water flow from a tap in 1 second, the flow rate is 5 L/s.
While there isn't a specific "law" directly named after litres per second, the measurement is heavily tied to principles of fluid dynamics, particularly:
Continuity Equation: This equation states that for incompressible fluids, the mass flow rate is constant throughout a pipe or channel. It's mathematically expressed as:
Where:
Bernoulli's Principle: This principle relates the pressure, velocity, and height of a fluid in a flow. It's essential for understanding how flow rate affects pressure in fluid systems.
For further reading, explore resources from reputable engineering and scientific organizations, such as the American Society of Civil Engineers or the International Association for Hydro-Environment Engineering and Research.
Convert 1 pnt/s to other units | Result |
---|---|
Pints per second to Cubic Millimeters per second (pnt/s to mm3/s) | 473176.47302579 |
Pints per second to Cubic Centimeters per second (pnt/s to cm3/s) | 473.17647302579 |
Pints per second to Cubic Decimeters per second (pnt/s to dm3/s) | 0.4731764730258 |
Pints per second to Cubic Decimeters per minute (pnt/s to dm3/min) | 28.390588381547 |
Pints per second to Cubic Decimeters per hour (pnt/s to dm3/h) | 1703.4353028928 |
Pints per second to Cubic Decimeters per day (pnt/s to dm3/d) | 40882.447269428 |
Pints per second to Cubic Decimeters per year (pnt/s to dm3/a) | 14932313.865159 |
Pints per second to Millilitres per second (pnt/s to ml/s) | 473.17647302579 |
Pints per second to Centilitres per second (pnt/s to cl/s) | 47.317647302579 |
Pints per second to Decilitres per second (pnt/s to dl/s) | 4.7317647302579 |
Pints per second to Litres per second (pnt/s to l/s) | 0.4731764730258 |
Pints per second to Litres per minute (pnt/s to l/min) | 28.390588381547 |
Pints per second to Litres per hour (pnt/s to l/h) | 1703.4353028928 |
Pints per second to Litres per day (pnt/s to l/d) | 40882.447269428 |
Pints per second to Litres per year (pnt/s to l/a) | 14932313.865159 |
Pints per second to Kilolitres per second (pnt/s to kl/s) | 0.0004731764730258 |
Pints per second to Kilolitres per minute (pnt/s to kl/min) | 0.02839058838155 |
Pints per second to Kilolitres per hour (pnt/s to kl/h) | 1.7034353028928 |
Pints per second to Cubic meters per second (pnt/s to m3/s) | 0.0004731764730258 |
Pints per second to Cubic meters per minute (pnt/s to m3/min) | 0.02839058838155 |
Pints per second to Cubic meters per hour (pnt/s to m3/h) | 1.7034353028928 |
Pints per second to Cubic meters per day (pnt/s to m3/d) | 40.882447269428 |
Pints per second to Cubic meters per year (pnt/s to m3/a) | 14932.313865159 |
Pints per second to Cubic kilometers per second (pnt/s to km3/s) | 4.7317647302579e-13 |
Pints per second to Teaspoons per second (pnt/s to tsp/s) | 96 |
Pints per second to Tablespoons per second (pnt/s to Tbs/s) | 32 |
Pints per second to Cubic inches per second (pnt/s to in3/s) | 28.875133096317 |
Pints per second to Cubic inches per minute (pnt/s to in3/min) | 1732.507985779 |
Pints per second to Cubic inches per hour (pnt/s to in3/h) | 103950.47914674 |
Pints per second to Fluid Ounces per second (pnt/s to fl-oz/s) | 16 |
Pints per second to Fluid Ounces per minute (pnt/s to fl-oz/min) | 960 |
Pints per second to Fluid Ounces per hour (pnt/s to fl-oz/h) | 57600 |
Pints per second to Cups per second (pnt/s to cup/s) | 2 |
Pints per second to Pints per minute (pnt/s to pnt/min) | 60 |
Pints per second to Pints per hour (pnt/s to pnt/h) | 3600 |
Pints per second to Quarts per second (pnt/s to qt/s) | 0.5 |
Pints per second to Gallons per second (pnt/s to gal/s) | 0.125 |
Pints per second to Gallons per minute (pnt/s to gal/min) | 7.5 |
Pints per second to Gallons per hour (pnt/s to gal/h) | 450 |
Pints per second to Cubic feet per second (pnt/s to ft3/s) | 0.01671007805695 |
Pints per second to Cubic feet per minute (pnt/s to ft3/min) | 1.0026046834171 |
Pints per second to Cubic feet per hour (pnt/s to ft3/h) | 60.156281005028 |
Pints per second to Cubic yards per second (pnt/s to yd3/s) | 0.0006188908701992 |
Pints per second to Cubic yards per minute (pnt/s to yd3/min) | 0.03713345221195 |
Pints per second to Cubic yards per hour (pnt/s to yd3/h) | 2.2280071327173 |