Pints per second (pnt/s) | Cubic meters per hour (m3/h) |
---|---|
0 | 0 |
1 | 1.7034353028928 |
2 | 3.4068706057857 |
3 | 5.1103059086785 |
4 | 6.8137412115714 |
5 | 8.5171765144642 |
6 | 10.220611817357 |
7 | 11.92404712025 |
8 | 13.627482423143 |
9 | 15.330917726036 |
10 | 17.034353028928 |
20 | 34.068706057857 |
30 | 51.103059086785 |
40 | 68.137412115714 |
50 | 85.171765144642 |
60 | 102.20611817357 |
70 | 119.2404712025 |
80 | 136.27482423143 |
90 | 153.30917726036 |
100 | 170.34353028928 |
1000 | 1703.4353028928 |
Converting from pints per second to cubic meters per hour involves several steps, including unit conversions for both volume and time. Here’s a step-by-step explanation to convert 1 pint per second to cubic meters per hour:
Convert Pints to Cubic Meters:
Therefore,
Convert Seconds to Hours:
Calculate Cubic Meters per Hour:
So,
Thus, 1 pint per second is equivalent to approximately 1.7034 cubic meters per hour.
0.5 Pints per Second:
5 Pints per Second:
20 Pints per Second:
By understanding the conversion process and applying it to different flow rates, you can grasp the scale of operations in various real-world applications.
See below section for step by step unit conversion with formulas and explanations. Please refer to the table below for a list of all the Cubic meters per hour to other unit conversions.
Pints per second (pint/s) measures the volume of fluid that passes a point in a given amount of time. It's a unit of volumetric flow rate, commonly used for liquids.
Pints per second is a rate, indicating how many pints of a substance flow past a specific point every second. It is typically a more practical unit for measuring smaller flow rates, while larger flow rates might be expressed in gallons per minute or liters per second.
The unit is derived from two base units:
Combining these, we get pints per second (pint/s), representing volume per unit time.
Flow rate () is generally calculated as:
Where:
While "pints per second" might not be the most common unit encountered daily, understanding the concept of volume flow rate is crucial. Here are a few related examples and conversions to provide perspective:
Conversions to other common units:
While there isn't a specific "law" tied directly to pints per second, it's essential to understand how flow rate relates to other physical principles:
Fluid Dynamics: Pints per second is a practical unit within fluid dynamics, helping to describe the motion of liquids.
Continuity Equation: The principle of mass conservation in fluid dynamics leads to the continuity equation, which states that for an incompressible fluid in a closed system, the mass flow rate is constant. For a fluid with constant density , the volumetric flow rate is constant. Mathematically, this can be expressed as:
Where is the cross-sectional area of the flow and is the average velocity. This equation means that if you decrease the cross-sectional area, the velocity of the flow must increase to maintain a constant flow rate in or .
Hagen-Poiseuille Equation: This equation describes the pressure drop of an incompressible and Newtonian fluid in laminar flow through a long cylindrical pipe. Flow rate is directly proportional to the pressure difference and inversely proportional to the fluid's viscosity and the length of the pipe.
Where:
Cubic meters per hour () is a unit of volumetric flow rate. It quantifies the volume of a substance that passes through a specific area per unit of time, specifically, the number of cubic meters that flow in one hour. It's commonly used for measuring the flow of liquids and gases in various industrial and environmental applications.
A cubic meter () is the SI unit of volume. It represents the amount of space occupied by a cube with sides of 1 meter each. Think of it as a volume equal to filling a cube that is 1 meter wide, 1 meter long, and 1 meter high.
"Per hour" indicates the rate at which the cubic meters are moving. So, a flow rate of 1 means that one cubic meter of substance passes a specific point every hour.
The volumetric flow rate (Q) in cubic meters per hour can be calculated using the following formula:
Where:
Several factors can influence the flow rate measured in cubic meters per hour:
While there's no specific "law" or famous historical figure directly associated with the unit "cubic meters per hour," the underlying principles are rooted in fluid dynamics and thermodynamics. Figures like Isaac Newton (laws of motion, viscosity) and Daniel Bernoulli (Bernoulli's principle relating pressure and velocity) laid the groundwork for understanding fluid flow, which is essential for measuring and utilizing flow rates in .
Convert 1 pnt/s to other units | Result |
---|---|
Pints per second to Cubic Millimeters per second (pnt/s to mm3/s) | 473176.47302579 |
Pints per second to Cubic Centimeters per second (pnt/s to cm3/s) | 473.17647302579 |
Pints per second to Cubic Decimeters per second (pnt/s to dm3/s) | 0.4731764730258 |
Pints per second to Cubic Decimeters per minute (pnt/s to dm3/min) | 28.390588381547 |
Pints per second to Cubic Decimeters per hour (pnt/s to dm3/h) | 1703.4353028928 |
Pints per second to Cubic Decimeters per day (pnt/s to dm3/d) | 40882.447269428 |
Pints per second to Cubic Decimeters per year (pnt/s to dm3/a) | 14932313.865159 |
Pints per second to Millilitres per second (pnt/s to ml/s) | 473.17647302579 |
Pints per second to Centilitres per second (pnt/s to cl/s) | 47.317647302579 |
Pints per second to Decilitres per second (pnt/s to dl/s) | 4.7317647302579 |
Pints per second to Litres per second (pnt/s to l/s) | 0.4731764730258 |
Pints per second to Litres per minute (pnt/s to l/min) | 28.390588381547 |
Pints per second to Litres per hour (pnt/s to l/h) | 1703.4353028928 |
Pints per second to Litres per day (pnt/s to l/d) | 40882.447269428 |
Pints per second to Litres per year (pnt/s to l/a) | 14932313.865159 |
Pints per second to Kilolitres per second (pnt/s to kl/s) | 0.0004731764730258 |
Pints per second to Kilolitres per minute (pnt/s to kl/min) | 0.02839058838155 |
Pints per second to Kilolitres per hour (pnt/s to kl/h) | 1.7034353028928 |
Pints per second to Cubic meters per second (pnt/s to m3/s) | 0.0004731764730258 |
Pints per second to Cubic meters per minute (pnt/s to m3/min) | 0.02839058838155 |
Pints per second to Cubic meters per hour (pnt/s to m3/h) | 1.7034353028928 |
Pints per second to Cubic meters per day (pnt/s to m3/d) | 40.882447269428 |
Pints per second to Cubic meters per year (pnt/s to m3/a) | 14932.313865159 |
Pints per second to Cubic kilometers per second (pnt/s to km3/s) | 4.7317647302579e-13 |
Pints per second to Teaspoons per second (pnt/s to tsp/s) | 96 |
Pints per second to Tablespoons per second (pnt/s to Tbs/s) | 32 |
Pints per second to Cubic inches per second (pnt/s to in3/s) | 28.875133096317 |
Pints per second to Cubic inches per minute (pnt/s to in3/min) | 1732.507985779 |
Pints per second to Cubic inches per hour (pnt/s to in3/h) | 103950.47914674 |
Pints per second to Fluid Ounces per second (pnt/s to fl-oz/s) | 16 |
Pints per second to Fluid Ounces per minute (pnt/s to fl-oz/min) | 960 |
Pints per second to Fluid Ounces per hour (pnt/s to fl-oz/h) | 57600 |
Pints per second to Cups per second (pnt/s to cup/s) | 2 |
Pints per second to Pints per minute (pnt/s to pnt/min) | 60 |
Pints per second to Pints per hour (pnt/s to pnt/h) | 3600 |
Pints per second to Quarts per second (pnt/s to qt/s) | 0.5 |
Pints per second to Gallons per second (pnt/s to gal/s) | 0.125 |
Pints per second to Gallons per minute (pnt/s to gal/min) | 7.5 |
Pints per second to Gallons per hour (pnt/s to gal/h) | 450 |
Pints per second to Cubic feet per second (pnt/s to ft3/s) | 0.01671007805695 |
Pints per second to Cubic feet per minute (pnt/s to ft3/min) | 1.0026046834171 |
Pints per second to Cubic feet per hour (pnt/s to ft3/h) | 60.156281005028 |
Pints per second to Cubic yards per second (pnt/s to yd3/s) | 0.0006188908701992 |
Pints per second to Cubic yards per minute (pnt/s to yd3/min) | 0.03713345221195 |
Pints per second to Cubic yards per hour (pnt/s to yd3/h) | 2.2280071327173 |